• Title/Summary/Keyword: 지반재료

Search Result 1,016, Processing Time 0.044 seconds

A Study on Durability and Impermeability of Environmentally Friendly Inorganic Ground Injection Material (환경 친화적인 무기질계 지반주입재의 내구성 및 차수효과에 관한 연구)

  • Chun, Byungsik;Kang, Hyoungnam;Do, Jongnam;Lim, Jooheon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.113-119
    • /
    • 2006
  • Recently, the ground injection method using water glasses as one of the main resources and the products of these constructions have basic problems in terms of the method of constructions for the permanent foundation reinforcement and stopping leakage of water because they have some serious problems such as durability, compressive strength, injectant eluviation and so forth even though they are still used to stop leakage of water in the temporary structures. The purpose of this study is to demonstrate the strength characteristic and environment friendliness of NDS method by unconfined compressive strenth test, permeability test, length change test, leaching test, and assessment of environmental impact in comparison water glass type material. The test results show that NDS method has significant improvement of strength, permeability, volume change, and leaching. An assessment of environmental impact also demonstrates that the NDS material is environmentally friendly.

  • PDF

지반조사 연구 및 기술 동향

  • 지반조사기술위원회
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03a
    • /
    • pp.366-380
    • /
    • 2004
  • 댐, 터널, 도로, 교량 등의 모든 토목구조물은 지반위 또는 지반 내에 위치하고 있다. 지반조사의 목적은 이들 토목구조물의 설계와 시공에 관한 정확한 지반 정보를 얻는 데 있다. 지반은 어느 정도 물리적 특성을 조절할 수 있는 스틸, 콘크리트, 목재 등의 다른 토목재료들과 그 성질이 판이하게 다르다. 토목구조물 시공 중 지반과 관련된 많은 위험이 있는데 지반의 성질을 제대로 이해하지 못하고 시공을 하는 경우, 상당한 위험이 따를 수 있다.(중략)

  • PDF

A Model test on the behavior of Backfill Materials improvement at Abutment (교대 뒤채움 재질 변경시 지반거동에 관한 실내모형실험)

  • Jeon, Nam-Soo;Shin, Jae-Hong;Cho, Min-Hyuk;Choe, Myong-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1061-1064
    • /
    • 2010
  • 뒷채움재료의 선정기준으로 구조물과 연이은 토공부 사이의 부등침하를 최소화하기 위해 맞물림(Interlocking)효과 및 다짐성이 우수하고 배수가 원활히 될 수 있는 입상재료인 선택층 재료를 사용하는 것으로 규정 및 설계하고 있다. 일률적으로 정해진 현재의 뒤채움재료 선정기준은 건설초기에 손쉽게 구할 수 있었던 선택층 재료인 SB-1의 공급이 어려워져 적절하게 현장여건을 고려하기 곤란하다. 공학적 측면에서 지나치게 안전측으로 선택 및 설계되는 경우가 있어 공사비의 상승 등 시공성과 경제성 측면에서 많은 문제점을 가지고 있다. 본 연구에서는 실내 모형토조를 이용하여 뒤채움 완료 후 뒤채움부 상단에서 교통하중에 의한 장기동적토압을 모사해 뒤채움부의 장기 침하량과 수직, 수평토압을 측정 비교해 교대 뒤채움부 재질 변경을 위한 기초자료로 활용하고자 한다.

  • PDF

Numerical Calculation of High Pressure Compaction for Porous Materials (높은 압력을 받는 다공질재료의 압축에 대한 수치해석적 연구)

  • 박종관
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1987
  • A practical constitutive equation with sufficient generality is proposed for porous materials to deal with plastic pore compaction and pore related strain-hardening. With an application of this proposed model, finite element calculations are executed for the compaction of a porous material. Results show powerful potential of finite element method in a quantitative investigation of the process of the compaction. Special attention is given to the process of unloading during which the development of tensile principal stress may lead to phenomena such as lamination and end-capping.

  • PDF

Repeated Load Triaxial Tests on Unbound Geomaterials in Pavement Foundations (반복재하시험에 의한 도로기초의 변형특성 평가)

  • Park, Seong-Wan;Hwang, Kyu-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-62
    • /
    • 2008
  • This paper presents the results of a study that was performed to evaluate the characteristics of deformation under repeated loadings in unbound geomaterials of pavements. Two important parameters, resilient and permanent deformation were estimated using the repeated load triaxial test. In addition, the effects of different stress state and environmental conditions with various materials were evaluated. Due to the locking mechanism and resiliency of unbound geomaterials, a consistent increase in permanent deformation on unbound geomaterials was observed and the asymptotic condition is slightly reached. In conclusion, the results show that selected models and parameters are satisfactory to predict permanent deformations after a certain number of loadings.

  • PDF

Assessment of Geosynthetic Properties of Rubber Reinforced Composites (고무강화 복합재료의 지반용 특성 평가)

  • Jeon, H.Y.
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.247-252
    • /
    • 1999
  • Rubber related geosynthetics(GS) as reinforcement and water barrier materials were manufactured by thermal bonding method and examined the their performance for applications to civil and environmental engineering fields. The spunbonded polyester nonwoven, fiber glass mat and fabric type geogrid of a high tenacity polyester filament were used as matrix and polyester film, elastomeric bitumen with SBS polymer and asphalt were used as reinforcements to manufacture the rubber related geosynthetics. A fiber glass mat and geogrid matrix GS showed more excellent mechanical properties and nonwoven and elastomeric bitumen matrix showed the more excellent permittivity. Softening points of rubber and asphalt mixture showed no difference and dimensional stability at high temperature, $120^{\circ}C$, represented no significant shrinkage. Resistance to ultraviolet of rubber related geosynthetics showed no visible alteration.

  • PDF

Strength and Deformation Characteristics on Stabilized Pavement Geomaterials(I): Laboratory Test (안정처리된 도로하부 지반재료의 강도 및 변형특성(I): 실내실험)

  • Park, Seong-Wan;Ji, Jong-Keun;Park, Hee-Mun;Ohm, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.57-68
    • /
    • 2008
  • The stabilization techniques in the pavement foundations have advantages in increasing pavement performance and reducing pavement thickness. By mixing the geomaterials and stabilizer, the economical and structurally sound layer can be added in the pavement system. Until now, these techniques have been applied in the field empirically and the design criteria for stabilization has not been established. The purposes of this paper are to evaluate the mechanistic properties of stabilizers used for geomaterials and determine the type and optimum amount of stabilizer for each technique. The unconfined compressive testing and repeated load resilient modulus test were conducted on the coarse grained soils mixed with various types of stabilizer to investigate the strength and deformation characteristics of stabilized geomaterials. It is found from the test that the unconfined compressive strength of stabilized geomaterials is more than ten times higher than that of gradation modified geomaterials. The resilient modulus of stabilized geomaterials increases by $6{\times}10$ times compared to the original soils and tends to increase with increase of volumetric and deviatoric stress, and amount of stabilizer.

  • PDF