• Title/Summary/Keyword: 지반비선형

Search Result 557, Processing Time 0.022 seconds

Effects of Soil Nonlinearity Characteristics on the Seismic Response of KNGRStructures (지반의 비선형 특성이 차세대원전 구조물의 지진응답에 미치는 영향)

  • 장영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.137-146
    • /
    • 1999
  • The SSI(Soil-Structure Interaction) analyses are being performed for the KNGR(Korean Next Generation Reactor) design because the KNGR is developed as a standard nuclear power plant concept enveloping various soil conditions. the SASSI program which adopts the flexible volume method is used for the SSI analyses. The soil curves used in the three dimensional SSI analyses of KNGR Nuclear Island(NI) structures are based on the upper bound shear modulus curve and lower bound damping degradation on SSI response the average shear modulus curve with average damping curve was used for two soil cases. This study presents the results of the variances by using different soil nonlinearity parameters based on the paametric SSI analyses. The results include the maximum member forces(shear and axial force) at the base of the NI structures and the 5% damping Floor Response Spectra (FRS) at some representative locations at the top of the NI superstructures. They are also compared together with the enveloped SSI results for eight soil cases and fixed-base analysis for rock case by using two control motions.

  • PDF

A Study on Settlement Prediction of Concrete-faced Rockfill Dam Using Measured Data During Construction and After Impounding (시공 중 및 담수 후 계측데이터를 이용한 CFRD의 침하량 예측 연구)

  • Lee, Chungwon;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.5-13
    • /
    • 2015
  • In the present study, the prediction methods of the crest settlement after impounding and the maximum internal settlement during dam construction were proposed through the analysis on settlement data at 38 monitored points of 36 Concrete-Faced Rockfill Dams (CFRDs). The results from this analysis provided that the crest settlement and the maximum internal settlement are increased in proportion to the dam height and the void ratio. However, the relationship between internal settlement and dam height for each void-ratio range plotted in semi-logarithmic scale is the nearly same. Also, the prediction of the crest settlement of the CFRD is possible through the maximum internal settlement during dam construction. In addition, it seems that the valley shape highly affects the dense dam body with high construction modulus. The results of this study will provide the useful tool for the design, construction and management of CFRDs.

Comparative Study on Unsaturated Characteristic Curves of Boeun Granite Weathered Soil during Drying and Wetting Paths (건조 및 습윤과정에서 보은 화강암 풍화토의 불포화특성곡선 비교)

  • Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.15-24
    • /
    • 2016
  • To investigate the unsaturated characteristics of the Boeun granite weathered soil, matric suction and volumetric water content were measured in both drying and wetting paths using Automated Soil-Water Characteristics Curve Apparatus. Based on the measured results, Soil-Water Characteristics Curve was estimated by van Genuchten (1980) model. The relationship between effective degree of saturation and matric suction showed the non-linear curve with S-shape and the hysteresis phenomenon occurred during drying and wetting paths. Suction Stress Characteristics Curve was estimated by the Lu and Likos (2006) model. The suction stress in drying path was constantly maintained and that in wetting path tended to increase when the effective degree of saturation was low. But the suction stress in drying path was larger than that in wetting path at the same degree of saturation when the effective degree of saturation became larger. Meanwhile, Hydraulic Conductivity Function was evaluated by the van Genuchten (1980) model which is one of the parameter estimation methods. The unsaturated hydraulic conductivity decreased with increasing the matric suction, and the decreasing velocity regarding to the matric suction in drying path was larger than that in wetting path.

The Change in Geotechnical Properties of the Deposited Clay Contaminated by Leachate from Waste Disposals (침출수로 오염된 퇴적점토의 역학적 특성변화)

  • Ha, Kwang-Hyun;Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.43-54
    • /
    • 2006
  • In this paper, the uniaxial, triaxial compression tests and consolidation tests on the clay sample substituted initial pore water for pollutant were performed to evaluate the change in geotechnical properties of the contaminated clay. The contaminant transport analysis on embankment type landfill using the MT3D model was also performed to evaluate the extent of transport and diffusion. There was tendency that strength, compressibility and permeability has increased with the increase in the concentration of NaCl solution. The increase in the strength and compressibility of sample saturated with leachate was higher than samples saturated with NaCl solution, but in the permeability coefficient was lower. As the result of contaminant transport analysis, the predicted concentration was in high with the increase in the initial concentration of $Cl^-$ ion and increased in a non-linear form. The transportation distance calculated with use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with the increase in the initial concentration.

  • PDF

Modeling of the Tensile Strength of Unsaturated Granular Soil Using Soil-water Characteristic Curve (흙-수분 특성 곡선을 이용한 불포화모래의 인장강도 모델링)

  • Kim Tae-Hyung;Kim Chan-Kee;Kim Tae-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.171-181
    • /
    • 2004
  • This study was conducted to explore the tensile strength models in granular soil at the full range of unsaturated state. Direct tension experiments were carried out with a newly developed direct tension technique. The measured experimental data were compared with theoretical models developed by Rumpf and Schubert for monosized ideal particulate solids at the unsaturated state. To do this, the soil-water characteristic curve obtained from a suction-saturation experiment was used to define the unsaturation state and the negative pore water pressure with different water content levels, which are important factors in theoretical tensile strength models. The nonlinear behavior of the tensile strength for unsaturated granular soil at the pendular state is appropriately simulated with Rumpf's model. For the funicular and capillary states, the predicted trend by Schubert's model is properly matched with the experimental data: tensile strength steadily increases and reaches a maximum value and then decreases until it reaches zero. This comparison supports the concept that the tensile strength of unsaturated real granular soil can be approximately simulated with theoretical models.

A Study on the Estimation of the Behaviors by Compression Method of Rock Pillar between Close Parallel Tunnels (근접 병설터널에서 필라 압축방법에 따른 필라부 강도특성 변화에 관한 연구)

  • Kim, Jae-Kyoung;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.87-94
    • /
    • 2013
  • In recent years, tunnel construction is being increased in order to resolve traffic congestion around urban area, however there are a lot of difficulties due to restrictions such as interference with existing alignment, adjacent structures and cost increase of land acquisition as well as public complaints for negative environmental impacts near the expected tunnel construction site. Therefore, applications of close parallel tunnel have been increasing greatly. But close parallel tunnels cannot guarantee the stability compared with normal parallel tunnel which has enough distance between tunnels. So various methods to strengthen the pillar have been introduced recently, however there is few methods which consider the pillar behaviour in the state of compression. In this paper, the reinforcement methods which reflect the behavior of pillar were reviewed with comparision and analysis by numerical method.

Excess Pore Pressure Induced by Cone Penetration in OC Clay (콘관입으로 인한 과압밀점토의 과잉간극수압의 분포)

  • Kim, Tai-Jun;Kim, Sang-In;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.75-87
    • /
    • 2006
  • A series of calibration chamber tests are performed to investigate the spatial distribution of the excess porewater pressure due to piezocone penetration into overconsolidated clays. It was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically, approaching zero at the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. Based on the modified Cam clay model and the cylindrical cavity expansion theory, the expressions to predict the Initial porewater pressure at the piezocone were developed, considering the effects of the strain rate and stress anisotropy. The method of predicting the spatial distribution of excess porewater pressure proposed in this study was verified by comparing it with the porewater pressure measured in overconsolidated specimens in the calibration chamber.

A Review of Strength Estimation Method on Ulsan Sedimentary Rocks (울산지역 퇴적암의 강도 추정법 연구 - 점 하중 강도지수로 일축 압축강도 추정 -)

  • Min, Tuk-Ki;Moon, Jong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.63-72
    • /
    • 2006
  • In the ASTM and ISRM, an uniaxial compressive strength(${\sigma}_{c}$) has been estimated to be 23(ASTM) or $20{\sim}25$(ISRM) times of point load strength index using a diametral test regardless of the rock rating or geological conditions. This paper presents a relationship between $I_{s}$ and ${\sigma}_{c}$ of a weak sedimentary rocks on Ulsan of the Kyung-Sang Basin in Korea. In the results of 291 for ${\sigma}_{c}$ test and 2310 for $I_{s}$ test from 77 spots, the predicted errors of ${\sigma}_{c}$ determined by strength ratio of ${\sigma}_{c}/I_{s}$ have been relatively less than those determined by linear regression analysis. And in case of weak sedimentary rocks such as mudstones, shales and sandstones, ${\sigma}_{c}$ should be lower than those suggested by ISRM and ASTM.

Estimation of Compressive Strength for Cemented River Sand (고결된 하상모래의 압축강도 추정)

  • Jeong, Woo-Seob;Yoon, Gil-Lim;Kim, Byung-Tak
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.67-78
    • /
    • 2008
  • In this study, artificial cemented sand made of a few portland cement and Nak-Dong river sand was researched closely to investigate cementing effect quantitatively through unconfined tests and triaxial tests. The peak strength and elastic modulus increased and dilation of cemented sand was restricted by the cementation, but after breakage of the cementation, dilation and negative excess pore water pressure increased. In stress-strain curve, strain-softening behavior appeared in drained condition but strain-hardening behavior was appeared in undrained condition as a result of the increase of effective stress. The test was quantitatively analyzed by multiple regression models, correlating each response variable with input variable. The equations are valid only over the range investigated. Its adjusted coefficient of determination was $0.81{\sim}0.91$, and dry density is important factor for estimating strength of cemented sand.

Evaluation of Characteristics of Re-liquefaction Resistance in Saturated Sand Deposits Using 1-g Shaking Table Test (1-g 진동대시험을 이용한 포화된 모래지반의 재액상화 강도 특성 평가)

  • Ha Ik-Soo;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2005
  • Many case histories of re-liquefaction phenomena seem to support the idea that sand deposits, if they once have been liquefied, could be reliquefied again by a subsequent earthquake even though the earthquake is smaller than the previous one. The magnitude of the strains induced in the initial liquefaction has a significant influence on the resistance of the sample to re-liquefaction. The deposits undergoing liquefaction experience large shear strain during liquefaction. And this previous strain changes the microstructure into highly anisotropic structure such as columnlike structure and connected voids. This type of anisotropy is so unstable that it can reduce re-liquefaction resistance. It is blown that the extent of anisotropic structural change depends on the gradation characteristics of ground. The purpose of this study is to estimate the correlation between the gradation characteristics of the sand and the ratio of re-liquefaction resistance to liquefaction resistance. In this study, 1-g shaking table tests were carried out on five different kinds of sands. During the tests the values of excess pore pressure at various depths and surface settlements were measured. Re-liquefaction resistances were not affected by the initial void ratio and the effective confining pressures, and the deposits of all test sands which had once been liquefied were reliquefied in the cyclic loading number below 1 to 1.5. The ratio of re-liquefaction resistance to liquefaction resistance linearly decreased as $D_{10}/C_u$ increased, and was constant as about 0.2 above the value of $D_{10}/C_u$, 0.15 mm.