• Title/Summary/Keyword: 지반비선형

Search Result 557, Processing Time 0.023 seconds

Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution (동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

Finite Element Analysis of Combined Smeared and Discrete Mechanisms for Rock Salt (Smeared와 Discrete 균열에 의한 암염의 유한요소해석)

  • 윤일로;허광희;황충열
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.107-115
    • /
    • 1995
  • The long term behavior of the Waste Isolation Pilot Plant(WIPP), a nuclear waste repository currently under construction near Carlsbad at New Mexico, depends upon the fracture and deformation behavior of bedded rock salt. Although many numerical analyses of the WIPP have been conducted, to our knowledge none have included the ability to simultaneously predict the effects of fracture and nonlinear deformation of the salt continuum. We are in the process of developing a finite element program to simulate the effects of nonlinear fracture mechanics and nonlinear continuum behavior of rock salt simultaneously.

  • PDF

Displacement Based Seismic Design of Steel jacket Retrofitted Reinforced Concrete Column (Steel-Jacket 보강 철근콘크리트 기둥의 변위기반 내진설계)

  • Jung, In-Kju;Cho, Chang-Geun;Park, Moon-Ho;Park, Soon-Eung;Nam, Yoo-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.197-198
    • /
    • 2009
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete structure and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness.

  • PDF

Nonlinear Seismic Analysis of Steel Structure Buildings Considering the Stiffnesses of the Foundation-Soil System (기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석)

  • Oh, Young-Hee;Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.137-144
    • /
    • 2005
  • Seismic responses of a building are affected due to the site soil conditions. In this study, linear time history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of the 3, 5 and 7-story steel structure buildings considering the rigid and soft soil conditions. According to the study results, the steel structure buildings designed for the gravity loads and wind load showed the elastic responses with the moderate earthquake of 0.11g, and the soft soil layer increased the displacement and the base shear force of a building. Therefore it is more resonable to perform an elastic seismic analysis of a building structure with the moderate earthquakes considering the characteristics of the soft soil layer.

  • PDF

Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System (지반-구조물 상호작용계의 계수추정 및 비선형 지진응답해석)

  • 윤정방
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.265-272
    • /
    • 1997
  • This paper presents the result of an international cooperative research on the post-correlation analysis of forced vibration tests and the prediction of earthquake responses of a large-scale seismic test structure. Through the post-correlation analysis, the properties of the soil layers are revised so that the best correlation in the responses may be obtained compared with the measured force vibration test data. Utilizing the revised soil properties as the initial linear values, the seismic responses are predicted for an earthquake using the equivalent linearlization technique based on the specified strain dependent characteristics of the shear moduli and damping ratios. It has been found that the predicted responses by the equivalent nonlinear procedure are in excellent agreement with the observed responses, which those using the initial properties are fairly off from the measured results.

  • PDF

Preliminary Experiment for Analysis of Guided Wave Behaviors in Buried Steel Pipes (지반에 매립된 배관에서의 유도초음파 거동 해석을 위한 기초 실험)

  • Lee, Ju-Won;Shin, Sung-Woo;Na, Won-Bae;Kim, Jae-Min;Kim, Young-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.673-675
    • /
    • 2011
  • 본 연구에서는 매립 구간의 길이가 유도초음파 신호 강도에 미치는 영향을 분석하였다. 유도초음파 모드 해석을 통해 가진 모드와 주파수를 결정하였으며, 유도초음파의 가진 및 수진은 경사각 입사 방식의 Pitch-Catch 법을 이용하였다. 또한, 비 매립된 배관에서 유도초음파 신호를 획득하여, 이를 기준으로 매립된 배관에서 획득한 유도초음파 신호를 분석하였다. 실험 결과 매립 구간의 길이가 유도초음파의 신호 강도에 매우 큰 영향을 미칠 뿐만 아니라, 매립 구간의 길이와 신호 강도의 변화가 선형 비례적인 관계를 보이지 않는다는 것을 확인할 수 있었다.

  • PDF

Nonlinear earthquake response analysis of CWR on bridge considering soil-structure interaction. (지반-구조물 상호작용을 고려한 교량상 장대레일의 비선형 지진응답해석)

  • Shin Ran Cheol;Cho Sun Kyu;Yang Shin Chu;Choi Jun Seong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.733-738
    • /
    • 2004
  • Recently continuous welded rail is generally used to ensure running performances and to overcome the problems such as structural vulnerability and fastener damage at the rail expansion joint. Though the use of continuous welded rail on bridge has the advantage of decreasing the vibration and damage of rail, it still the risk of buckling and breaking of rail due to change of temperature, starting and/or breaking force, axial stress concentration and so on. So, VIC code and many methods has been developed by researchers considering rail-bridge interaction. Although there are many research concerning stability of continuous welded rail about temperature change on bridge and starting and/or breaking force, the study of continuous welded mil for earthquake load is still unsufficient. In this study, the nonlinear seismic response analysis of continuous welded rail on bridge considering soil-structure interaction, geotechnical characteristic of foundation and earthquake isolation equipment has been performed to examine the stability of continuous welded rail.

  • PDF

Nonlinear Earthquake Response Analysis of 2-D Underground Structures with Soil-Structure Interaction Including Separation and Sliding at Interface (지반-구조물 상호작용계의 경계면에서 미끄러짐과 분리현상을 고려한 이차원 지하구조물의 비선형 지진응답해석)

  • 최준성;이종세;김재민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.174-181
    • /
    • 2002
  • The paper presents an effective analytical method for SSI systems which can have separation or sliding at the soil-structure interface. The method is based on a hybrid approach which combines a linear SSI code KIESSI-2D in frequency domain with a commercial finite element package ANSYS to obtain nonlinear dynamic responses in time domain. The method is applied to a 2-D underground box structure which experiences separation and sliding at the soil-structure interface. Material nonlinearity of the concrete structure is also included in the analysis. Effects of the interface conditions are examined and some critical factors affecting the seismic performance of underground structures are identified.

  • PDF

Investigation of the rapid embankment stability on the soft ground using nonlinear analysis (급속한 성토시 비선형 해석을 통한 연약지반의 안전성 검토)

  • Do, Ki-Hoon;Kim, Moo-Il;Lee, Jun-Seok
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1348-1353
    • /
    • 2006
  • In this paper, nonlinear elasto-plastic analysis was performed to investigate the stability of the rapid embankment under undrained condition. The commercial code ABAQUS/Standard was used in the study. Resonant Column test (RC test) results and Ramberg-Osgood model were utilized to simulate the nonlinear behavior of soft clay. Ramgerg-Osgood model was tested whether it simulates the nonlinear behavior of the soil properly in first. Then the analysis result was compared with the previous research results. It was found that the Ramberg-Osgood model matched well with the soil behavior of soft clay in the rapid embankment under undrained condition.

  • PDF

A Study on the Formulation of the Interaction Problem between Upper Structure and the Ground under Consolidation (上部 構造와 下部 壓密地盤 間 상호작용 문제의 정식화에 대한 연구)

  • Lee, Oe-Duck
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.51-61
    • /
    • 1999
  • When a structure is built on the ground under consolidation, the instant corresponding contact pressure which the upper structure exerts on the ground is established. But, as the consolidation of the ground proceeds, the contact pressure is changed because of the flexural rigidity of the upper structure. This varied contact pressure exerts influence on the consolidation behavior of the ground. And, this varied consolidation behavior exerts on the contact pressure in retum. This kind of interaction between the upper struture and the olwer ground under consolidation contimues till all the consolidation process in finished. So this problem cannot be defined as a linear problem. In this paper an approximation method which can analyse this non-linear interaction problem is proposed by the FEM.

  • PDF