• Title/Summary/Keyword: 지반비선형

Search Result 557, Processing Time 0.021 seconds

Assessment of p-y Behaviors of a Cyclic Laterally Loaded Pile in Saturated Dense Silty Sand (조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가)

  • Baek, Sung-Ha;Choi, Changho;Cho, Jinwoo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.97-110
    • /
    • 2019
  • Piles that support offshore wind turbine structures are dominantly subjected to cyclic lateral loads of wind, waves, and tidal forces. For a successful design, it is imperative to investigate the behavior of the cyclic laterally loaded piles; the p-y curve method, in which the pile and soil are characterized as an elastic beam and nonlinear springs, respectively, has been typically utilized. In this study, model pile tests were performed in a 1 g gravitational field so as to investigate the p-y behaviors of cyclic laterally loaded piles installed in saturated dense silty sand. Test results showed that cyclic lateral loads gradually reduced the overall stiffness of the p-y curves (initial stiffness and ultimate soil reaction). This is because the cyclic lateral loads disturbed the surrounding soil, which led to the decrement of the soil resistance. The decrement effects of the overall stiffness of the p-y curves became more apparent as the magnitude of cyclic lateral load increased and approached the soil surface. From the test results, the cyclic p-y curve was developed using a p-y backbone curve method. Pseudo-static analysis was also performed with the developed cyclic p-y curve, confirming that it was able to properly predict the behaviors of cyclic laterally loaded pile installed in saturated dense silty sand.

Seismic Retrofit Design Procedure Using a Friction Damper (마찰 감쇠기를 사용한 구조물의 보강 설계법 제안)

  • Moon, Ki-Hoon;Han, Sang-Whan;Jo, Han-Chul;Lee, Kang-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.45-53
    • /
    • 2011
  • The purpose of this study was to propose a design procedure for a damped structure with a friction damper for an existing structure. The target displacement of the damped structure was determined using the maximum displacement of the existing structure. The displacement of the damped structures was predicted using a proposed equation for the inelastic displacement ratio. For this study, we conducted a nonlinear response history analysis using 80 earthquake ground motions to verify the validity of the proposed design procedure by comparing the responses of the damped and undamped structures. Based on the dynamic analysis results, it was concluded that the predicted displacement of the damped structure using the proposed design procedure matched well with the analysis results.

Variations of Complex Permittivity due to Water Content and Heavy Metal Contamination (함수비와 중금속 오염도에 따른 유전상수의 변화)

  • Oh Myoun-Hak;Kim Yong-Sung;Yoo Dong-Ju;Park Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.231-241
    • /
    • 2005
  • Laboratory experiments were performed to examine the effects of water content and to see if permittivity had sufficient sensitivity to identify subsurface contamination. Both real and imaginary permittivities of unsaturated sand were strongly governed by the volumetric water content. Especially, a linear relationship between real permittivity and volumetric water content was derived at high frequencies (MHz ranges). Heavy metals in pore fluid result in significant increases in the effective imaginary permittivity, due to ionic conduction, but decreases in the real permittivity arises due to the decreased orientational polarization of water molecules caused by hydration of ions. Clear increase in the effective imaginary permittivity with heavy metal concentration was found to be valuable in the application of electrical methods for detecting heavy metals in the subsurface. However, because the permittivity is primarily dependent on the volumetric water content of soil, pre-evaluation on the volumetric water content is required.

A Study on the Calculation of Consolidation Constants using Moisture Content of Sedimentary Clay in Busan and Gyeongnam Regions (부산·경남지역 퇴적 점토의 함수비를 이용한 압밀정수 산정 연구)

  • Sung-Uk Kang;Dae-Hwan Kim;Tae-hyung Kim;Chin-Gyo Chung;In-Gon Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2024
  • In this study, physical property tests and standard consolidation tests were conducted on the marine clay of Busan New Port and North Port, the middle and lower reaches of the Nakdong River including Gimhae and Yangsan, and Ulsan regions. The moisture content, a property unrelated to sample disturbance with small individual test errors, was used for regression analysis with the compression index, virgin compression index, consolidation coefficient, expansion index, and secondary compression index, among others. Subsequently, the correlation and accuracy were evaluated. Upon analyzing the correlation between the moisture content, void ratio, and liquid limit commonly used physical properties for calculating compression indexes, it was confirmed that the liquid limit had the lowest correlation. Through a linear regression analysis of the consolidation constants using the current moisture content in the natural state, a high correlation was demonstrated. Relationship equations were then presented to determine settlement and settlement time. This study suggests that moisture content can be utilized as an alternative for evaluating and calculating consolidation constants when examining ground settlement in sedimentary clays distributed in the Busan and Gyeongnam regions.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Quantitative evaluation of collapse hazard levels of tunnel faces by interlinked consideration of face mapping, design and construction data: focused on adaptive weights (막장관찰 및 설계/시공자료가 연계 고려된 터널막장 붕괴 위험도의 정량적 산정: 가변형 가중치 중심으로)

  • Shin, Hyu-Soung;Lee, Seung-Soo;Kim, Kwang-Yeom;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.505-522
    • /
    • 2013
  • Previously, a new concept of indexing methodology has been proposed for quantitative assessment of tunnel collapse hazard level at each tunnel face with respect to the given geological data, design condition and the corresponding construction activity (Shin et al, 2009a). In this paper, 'linear' model, in which weights of influence factors are invariable, and 'non-linear' model, in which weights of influence factors are variable, are taken into account with some examples. Then, the 'non-linear' model is validated by using 100 tunnel collapse cases. It appears that 'non-linear' model allows us to have adapted weight values of influence factors to characteristics of given tunnel site. In order to make a better understanding and help for an effective use of the system, a series of operating processes of the system are built up. Then, by following the processes, the system is applied to a real-life tunnel project in very weak and varying ground conditions. Through this approach, it would be quite apparent that the tunnel collapse hazard indices are determined by well interlinked consideration of face mapping data as well as design/construction data. The calculated indices seem to be in good agreement with available electric resistivity distribution and design/construction status. In addition, This approach could enhance effective usage of face mapping data and lead timely and well corresponding field reactions to situation of weak tunnel faces.

Seismic Risk Assessment of Extradosed Bridges with Lead Rubber Bearings (LRB 면진장치가 설치된 엑스트라도즈드교의 지진위험도 평가)

  • Kim, Doo Kie;Seo, Hyeong Yeol;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.155-162
    • /
    • 2006
  • This study presents the seismic risk assesment for an extradosed bridge with seismic isolators of lead rubber bearings(LRB). First, the seismic vulnerability of a structure and then the seismic hazard of the site are evaluated using earthquake data set and seismic hazard map in Korea, and then the seismic risk of the structure is assessed. The nonlinear seismic analyses are carried out to consider plastic hinges of bridge columns and nonlinear characteristics of soil foundation. The ductility demand is adopted to describe the nonlinear behavior of a column, and the moment-curvature curve of a column is assumed to be bilinear hysterestic. The fragility curves are represented as a log-normal distribution function for column damage, movement of superstructure, and cable yielding. And seismic hazard is estimated using the available seismic hazard maps. The results show that the effectiveness of the seismic isolators for the columns is more noticeable than those for cables and girders, in seismic isolated extradosed bridges under earthquakes.

A Simplified Method for the Calculation of Skin Friction on Piles in Soft Clay (연약 지반에 시공된 말뚝의 주면마찰력 산정 간편법)

  • Kim, Soo Il;Jeong, Sang Seom;Jung, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.171-178
    • /
    • 1994
  • The skin friction on single piles was investigated by using an analytical study and a numerical analysis. The emphasis was given to the variation of skin friction on piles based on the load transfer mechanism developed for the consolidation of a surrounding soft clay. Local yield or slip at the pile-soil interface was taken into account by specifying a limiting value of shear stress. The response of a single pile was analyzed and compared to the results of field case study. Based on the results obtained, it is shown that the skin friction on a pile increases as the degree of consolidation increases and the ultimate axial forces result from the long term behavior of clay corresponding to the end of the consolidation. It is also found that the analysis using one-dimensional consolidation theory as well as two or three-dimensional non-linear analysis gives relatively reasonable results.

  • PDF

Correlation Analysis between DCPT Value and SPT Value (동적콘관입시험값과 표준관입시험값의 상관성 분석)

  • Lee, Bongjik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.23-30
    • /
    • 2014
  • In-situ penetration tests have been widely used in geotechnical engineering for site investigation in support of analysis and design. Standard Penetration Test (SPT) and Dynamic Cone Penetration Test (DCPT) are typical dynamic sounding. DCPT was originally developed as an alternative for evaluating the properties of subgrade soils. The main advantages of DCPT are that it is fast, inexpensive, and it is particularly useful in delineating areas of weak soils overlying stronger strata and in quickly assessing the variability of the soil conditions. But lack of standardization is main reason that this test method has not been advanced more in recent years. In this study, it is clarified the correlation with the SPT blow count, N from DCPT data using big DCP eqipment. Regression analysis and correlationship analysis were conducted with the data from relationship between SPT and DCPT. The analysis results showed that the convert fact are in the range of 1.12~1.31 with variation with soil property.

A Numerical Analysis of Load Transfer Behavior of Axially Loaded Piles (축하중 재하말뚝의 하중전이 거동에 대한 수치해석)

  • 오세붕;최용규
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-106
    • /
    • 1998
  • The behavior of axially loaded pile was analyzed by two methodologies: one is the finite difference method using load transfer curves recommended by API(1993) , and the other is the numerical analysis using the FLAC program. From both analyses, load-displacement curves and load distributions along the depth were evaluated appropriately for the measured. The analysis using the FLAC could capture the nonlinearity of load-displacement curve even for unloading and reloading cases, since the unloaded stress paths of fill layer elements occurred on the failure envelop. Futhermore, the measured load transfer curves were compared with the API recommendations and with the calculations obtained front the results of the FLAC analysis for the interpretation of the transfer behavior between the soil and the pile under axial loadings. It was concluded that the atrial behavior of open ended piles at Pusan could be evaluated by both the finite difference analysis using API load transfer curves and the numerical analysis using FLAC.

  • PDF