• Title/Summary/Keyword: 지반그라우팅

Search Result 310, Processing Time 0.027 seconds

A Study on Bearing Capacity Reinforcement for PHC Pile Foundation Using Post-grouting (그라우팅 기법을 활용한 PHC 파일 기초의 지지력 증강 효과 연구)

  • Yoo, Min-Taek;Lee, Su-Hyung;Kim, Seok-Jung;Choi, Yeong-Tae;Park, Jeongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • In this research, post grouting methods were applied on PHC piles, and static load tests were conducted to confirm the effect of post grouting on bearing capacity enhancement of PHC piles. Grouting pressures of 1.9 MPa and 3.5 MPa were applied, and bearing capacities of grouted piles were compared with that of non-grouted pile. From the static load test results, the bearing capacities of grouted piles were about 3 times higher than that of non-grouted pile. In addition, the design efficiency (allowable bearing capacity/nominal bearing capacity) increased from 32% to 97% after post grouting, and the axial stiffness of piles also increased by about 1.3 times per grouting pressure.

한강하저 터널에서의 지반상태에 따른 보강공법 -그라우팅을 중심으로-

  • 박남서
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.27-40
    • /
    • 1995
  • 한강하저의 지질은 수많은 대ㆍ소 단층들로 인해 심하게 교란되어 있어 지질상황의 변화가 매우 심하며, 터널을 굴착함에 있어 지하수의 유입을 차단하는 것이 안전시공을 위한 필수 과제로 직면한다. 본 고에서는 기 시공실적을 바탕으로 암반상태에 따른 차수그라우딩의 패턴을 비교ㆍ검토하였다. 본 구간에서는 암반상태에 따라 5가지 패턴이 적용되었으며, 경암 암반일 경우는 상부반단면만을 주입범위(주입범위 : 3.5m, 28공)로 하고 암반의 전단강도증진을 위해 강관보강을 시행하였다. 연암 암반 내지 파쇄대가 부분적으로 협재된 경우는 상부반단면만을 주입하되 주입범위 및 그라우팅 공수를 늘리는 방식(주입범위 : 5∼7, 42∼56공)으로 보강하였다. 풍화암 암반의 경우는 전단면을 주입범위로 하여 그라우팅 공수를 늘림(주입범위 : 7m, 81공)으로서 차수효과를 증진시켰다. 또한 본 공사구간 중 가장 난제였던 연약지반대(잔류토 내지 풍화토) 85m 구간은 자문회의 등을 거쳐 주입범위, 주입길이 및 주입공수, bulk head 구간을 늘려 시공하고, 굴착하면서 차수효과를 확인하는 방식을 취하였다.

  • PDF

A Study on the Stability of Group Piles Installed in the Deep Sea to the Seaquake (해진에 대한, 심해에 설치된 군말뚝의 안정성에 관한 연구)

  • 최용규;남문석;정두환
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.31-42
    • /
    • 2000
  • In this study, the stability of group piles installed in deep sea to the seaquake was studied by performing the calibration chamber model tests for open-ended pipe piles, grouted piles under soil plug and close-ended piles installed in the simulated deep sea. For each case (a single pile, 2-pile and 4-pile groups), series of seaquake tests were performed. While, during the simulated seaquake, the compressive capacity of the single open-ended pile depended on pile penetration depth(=7m), were found to be stable. But, a single grouted pile with penetration depth of 13m kept "mobility" state, the one with penetration depth of 20m was stable and grouted pile groups with penetration depth of 7m were stable regardless of pile penetration depth. By grouting soil plug of open-ended piles and soil under the pile toe of open-ended pipe piles installed in the deep sea, failure of soil plugging was prevented. Thus, close-ended piles were more stable than open-ended pile against the seaquake motionake motion.

  • PDF

The Development of End-expanded Soil Nailing Method for Ground Reinforcement and its Behavior Characteristics (선단확장형 쏘일네일링 공법 개발과 거동특성 분석)

  • Moon, Hongduk;Jung, Youndug
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.19-27
    • /
    • 2013
  • Recently, the natural and man-made slope collapses occur frequently because of sudden heavy rains. So, a variety of slope reinforcement methods have been developed and applied to failure slopes. Soil nailing method usage has been increased because of its workability and economic aspects. This method has been applied in combination with other slope stability methods. Soil nailing method is a kind of combinational structure of steel bar and cement grouting. This method uses skin friction between adjacent ground and cement grouting to stabilize the slope. In this study, End-expanded soil nailing method was developed. This method consists of steel bar and anchor body attached at the tip of the nail. During construction, the anchor body at steel bar tip is settled to the ground through the expanding action. In this study, field pull-out tests were performed for un-grouting soil nailing and grouting soil nailing. From the test results, a wedge force of End-expanded soil nailing method was analyzed. And the behavior characteristics of End-expanded soil nailing were studied.

Development and Reliability Verification of Quality Control System for Compaction Grouting Method (컴팩션 그라우팅 공법의 품질관리 시스템 개발 및 신뢰성 검증)

  • Seo, Seok-Hyun;Lee, Jung-Sang;Jung, Eui-Youp;Park, Sang-Yeong;Lee, Hyo-Bum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.11-20
    • /
    • 2020
  • This study introduced the compact grouting method that can be used for improving soft ground and restoring buildings with unequal subsidence. The pump used in the traditional compact grouting method is a system that injects one hole each, which reduces the construction efficiency, and the analog injection method manually manages the construction by field workers, making it difficult to manage consistent quality. Pump and quality control system were developed to solve problems in existing construction. Since field supervisor determines amount of injected materials by using analog equipment and controls manually, it is difficult to manage consistent quality of construction. Therefore, the quality control system was developed in order to solve that problem. The quality control system consists of automatic mixing system of injection materials, multiple simultaneous injection pumps, and injection management monitoring system. Performance of the quality control system was verified through on-site testing, and ground improvement performance was verified through quality testing after testing and testing of the compact grouting method. Therefore, it is expected that the integrated quality control system developed will improve the quality assurance and efficiency and stability of construction at sites where construction and quality verification are difficult.

Ground investigation using Complex Resistivity Method (복소전기비저항법을 이용한 지반조사)

  • Son, Jeong-Sul;Kim, Jung-Ho;Park, Sam-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.119-124
    • /
    • 2008
  • Due to the recent development of instruments which enabled the measurements of subtle IP effect in the ground and analysis algorithms, complex resistivity (CR) method was expanding its application to various field. In this study, we applied the CR method to the test site where the ground reinforcement had been done by injecting the cement mortar for investigating the effect of ground reinforcement. For this site, resistivity monitoring and tomography survey was carried out while the ground reinforcement had been made by the grouting. From the result, the anomalous region that was shown on the result of resistivity 4D monitoring was coincident with those of phase section in the CR method, because the cement grouting material had the strong IP effects. It might be expected that the CR method should be very powerful surveying tool for the similar purpose.

  • PDF

Grouting Effects of Microfine Cement in the Rock-based Sites (시멘트계 주입재료의 암반그라우팅 효과)

  • Kong, Jinyoung;Kim, Chanki;Park, Jinhwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.37-45
    • /
    • 2010
  • The particle size of microfine cement(MC) is so small that it can be injected into silt layer. But the more particle size is miniaturized, the more the cohesion increases. This phenomenon results in the decrease of the perviousness of MC. In this study, the grouting effects of microfine cement with superplasticizer to maintain cohesion low and that of normal cement were investigated in rock. To estimate the grouting effects, TCR/RQD test for rock quality, lugeon test, borehole loading test for coefficients of elastic and deformative stress, borehole shear test for shear stress, detection p~q~t(pressure~flow~time) chart tests were carried out. The results using MC show a better permeability, modulus of elasticity, deformation, charge per unit, and recover efficiency of grouting material than those of ordinary portland cement except shear stress.

Development and Assessment of Laboratory Testing Apparatus on Grouting Injection Performance (그라우팅 주입성능 실내실험 장비 개발 및 신뢰도 평가)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.23-31
    • /
    • 2016
  • Grout is generally operated with low viscous material similar to water, but grout for micro crack with high viscous materials and high injection pressure is gradually increased under the development of underground and subsea space. In order to estimate grouting injection performance considering crack width, viscosity of grouting materials, and injection pressure, there should be a reliable standard laboratory testing method. In this paper, theoretical injection mechanisms of grouting materials are presented as radial and linear flows, and laboratory testing apparatus are introduced to simulate each flow case. Radial flow is simulated by using acrylic disk plates which are able to spread grouting material radially from the center of the disk plates, and linear flow is simulated by using stainless parallel plane plates which are able to spread grouting material linearly. Apparatus are consist of upper and lower plates and industrial films with different thickness are placed between plates in order to simulate various crack widths. Laboratory verification tests with these apparatus were conducted with tap water (1cP at $20^{\circ}C$) as an injection material. Through the laboratory testing results, the best laboratory testing method is recommended in order to estimate grouting injection performance.

Stability Analysis for a Slope Reinforced with Pressure Grouted Soil Nails (가압식 그라우팅 쏘일네일 보강사면의 거동분석)

  • Kim, Yong-Min;Yun, Yeo-Hyeok;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.39-52
    • /
    • 2011
  • This paper describes a new numerical analysis technique in stability analysis for a slope reinforced with pressure grouted soil nails. The installing effect of pressure grouted soil nails can be simulated in this method. Shear strength reduction method associated with finite element method is used for slope stability analysis. Factors of safety for a slope reinforced with pressure grouted soil nails are compared with those for a natural slope and a slope reinforced with gravity grouted soil nails in order to investigate their reinforcing effects. More than 50% increase in the factor of safety is obtained when the slope is reinforced with pressure grouted soil nails compared to the one with gravity grouted soil nails. The reinforcing effects of pressure grouted soil nails become obvious with increase in their length. The reinforcing mechanism of the pressure grouted soil nails for the slope stability can be explained by the slope failure surface expanding gradually toward the backfill. The increased stability of the slope reinforced with pressure grouted soil nails results mainly from their improved pull-out resistance.