• Title/Summary/Keyword: 지반구조물 상호작용

Search Result 310, Processing Time 0.025 seconds

Three Dimensional Behavior or Square Footing and Bnlined Solt Ground Tunnel (정방형 기초와 Unlined Soft Ground터널의 3차원적 거동)

  • 유충식
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-110
    • /
    • 1994
  • Interaction between an unlined tunnel may cause a serious stability both the tunnel and the overlying and unli Red tunnel interaction meta study on the three dimensional bets a three dimensional elasto plastic the program, a wide range of blur puter analysis such as stress distr menu and tunnel deformation were footing and unlined tunnel. The yes traces the ultimate bearing capacity only on the tunnel size and location revealed is that an unlined tunnel under a square footing is subjected to three dimensional stress pattern along the tunnel axis, and that the magnitudes of stresses in the foundation soil and around tunnel perimeter are considerably smaller when loaded with a square than with a strip footings and the difference varies with the location and the type of stress. It is also revealed that the footing failure mechanism varies with the degree of footing and tunnel interaction.

  • PDF

A Study on the Seismic Performance Evaluation and the Seismic Analysis Method for Pre-Cast Concrete Lining (조립식 터널 라이닝(PCL)의 내진성능 평가 및 해석기법에 대한 고찰)

  • 정형식;배규진;이용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.197-207
    • /
    • 2001
  • 1980년대 이래 국내 터널의 시공법은 원지반의 강성을 활용한 NATM이 주를 이루고 있다. 그러나 NATM은 터널내부에 설치되는 내부라이닝의 여러 가지 문제점을 내포하고 있기 때문에 노르웨이에서는 조립식 터널 라이닝(Pre-Cast Concrete Lining, PCL)을 개발하여 현장타설 콘크리트 라이닝의 문제점을 해결하고자 하였다. 그러나 노르웨이와 같은 북유럽지역에서는 지진이 거의 발생되지 않고 있기 때문에 PCL공법 개발당시에 지진에 대한 영향을 고려하지 못하였다. 따라서 PCL공법을 국내에 도입하기 위해서는 먼저 지진에 대한 영향을 분석하여야 할 것으로 판단되므로 본 연구에서는 PCL공법 적용시 지진에 대한 안정성 평가 및 합리적 내진해석을 위한 연구를 수행하고자 하였다. PCL의 내진성능을 판단하기 위하여 먼저 국내에서 주로 많이 사용되고 있는 해석기법인 유사정적해석법과 응답스펙트럼해석법을 이용하여 분석하였으며 지반과 구조물의 상호작용에 대한 영향을 분석하기 위해 시간이력해석을 수행하여 터널심도별 PCL의 내진성능을 분석하였다. 이와 같은 방법으로 PCL의 내진해석을 수행한 결과, 부재에 발생된 응력이 허용응력 이내에서 발생되어 PCL의 내진성능을 확보된 것으로 판단된다. 또한 시간이력해석에 의한 지반-구조물 해석을 수행한 결과에 의하면 PCL의 내진성능을 확보하기 위한 터널의 최소 토피고가 터널직경에 2배 이상인 것으로 확인되었다. 또한 단순 구조물의 내진해석만으로는 PCL의 내진성능을 과소평가할 우려가 있는 것으로 나타났다.

  • PDF

The Analysis of Non-linear Interaction Problem between the Consolidation ground and the Upper Structure (압밀지반과 상부구조의 비선형 상호작용의 해석)

  • 이외득;정진환
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.327-336
    • /
    • 1997
  • When a structure is built on the consolidation ground, the instant elastic deflection occures according to the characteristics of the ground and the load on it. And the corresponding contact pressure is established. But, as time passes, the secondary consolidating deflection is added to the instant elastic deflection, the upper structure, due to its flexural rigidity, resist to the additional curvature. So the variation of the contact pressure occurs. And this new contact pressure exerts influence on the consolidation form again. The new consolidation form exerts influence on the contact pressure in return. This kind of interaction continues till all the consolidation of the ground is finished. So the consolidation problem can not be definded as the linear problem. This paper intends to scheme an approximate iteration method to analyse this non-linear interaction problem between the upper structure and the lower consolidation ground which supports the former.

  • PDF

Dynamic Analysis of Surface Foundation Using Half-space Fundamental Solution (반무한체의 기본해를 이용한 표면 강체기초의 동적거동해석)

  • Lee Kangwon;Koh Jae-Pil;Cho Woo Yeon;Kim Moon Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.51-54
    • /
    • 2001
  • 지진 등과 같은 외부 진동하중에 의해 발생되는 구조물의 진동은 구조물의 독립적 거동뿐만 아니라 지반과 구조물 기초의 접촉면을 통해 상호 영향을 미치게 된다. 특히 LNG 저장탱크나 원자력발전소 등과 같이 대현 상부구조물의 경우 상호작용력은 크게 작용하게 된다. 본 연구에서는 상부 구조계의 단순화된 형태인 기초계의 동적거동을 파악하기 위해 주파수영역 경계요소법을 사용하여 수치적으로 연구하였다. 반무한체 상에 존재하는 무질량 강체 표면기초에 대해 반무한 기본해를 이용하여 동적거동이 고찰되었으며 기존의 해석결과와 비교, 검토하여 본 연구방법의 타당함을 입증하였다.

  • PDF

A comparative study on the behavior of dynamic analysis and pseudo-static analysis considering SSI of a tall building and an adjacent underground structure (초고층 빌딩과 인접 지하구조물의 SSI를 고려한 동적해석과 유사정적해석의 거동 비교 연구)

  • You, Kwang-Ho;Kim, Seung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.671-686
    • /
    • 2018
  • Recently, earthquakes have occurred near Gyeongju and Pohang and the social demands are thus being increased for seismic analysis of tall buildings and their adjacent underground structure in big cities. Since most of the previous seismic analysis studies considered a tall building and an adjacent underground structure separately, however, they lack the analysis on dynamic mutual behavior between two structures. Therefore, in this study, a dynamic analysis with a full soil-structure interaction was performed for a complex underground facility with a tall building and an adjacent underground structure constructed on the bedrock with a surface layer. To improve the reliability, in particular, a pseudo-static analysis was performed and compared with the dynamic analysis results. It is comprehensively concluded that the analysis of adjacent underground structures being considered is more conservative than that of not considered.

Numerical Formulation of Axisymmetric Shell Element and Its Application to Geotechnical Problems (축대칭 쉘 요소의 유한요소 수식화와 지반공학적 활용)

  • Shin, Hosung;Kim, Jin-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.27-34
    • /
    • 2020
  • Use of axisymmetric shell element for the structure increases the efficiency and accuracy in finite element analysis of the interaction between the ground and the structure. This paper derived the force balance equation and the moment balance equation for an axisymmetric shell element based on Kirchhoff's theory. The governing equation for the axial deformation used the isoparametric shape function in the Galerkin formulation, and the governing equation for the shell bending used the higher-order shape function. The developed axisymmetric shell element was combined with Geo-COUS, a geotechnical finite element program for the coupled analysis with the ground. The accuracy of the developed element was confirmed through the example analyses of the circular plate and the liquid storage tank. And the energy balance equation for the axisymmetric shell element is presented.

Probabilistic Assessment of Dynamic Properties of Offshore Wind Turbines Considering Soil-Pile Interaction (지반과 말뚝의 상호작용을 고려한 고정식 해상풍력터빈의 동적 특성에 대한 확률적 평가)

  • Yi, Jin-Hak;Kim, Sun-Bin;Han, Taek Hee;Yoon, Gil-Lim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.343-350
    • /
    • 2015
  • Extensive discussion on the optimal types of offshore wind turbine(OWT) among monopile, tripod and jacket in the intermediate depth of water has been actively carried out in worldwide wind turbine industry. Selecting the optimal types of OWT among several substructural types, it is required to consider the economic and technical feasibility including dynamically stable design of a wind turbine system. In this study, the effects of loading levels and uncertainties of soil properties on the natural frequency of OWT have been quantitatively investigated. In conclusion, the natural frequency of monopile-type OWTs has a significant level of uncertainty, hence it is very important to minimize the level of uncertainties in soil properties when the monopile is selected as a foundation for an OWT.

Analysis and Prediction for Abutment Behavior of Prestressed Concrete Girder Integral Abutment Bridges (프리스트레스트 콘크리트 거더 일체식 교량의 교대 거동 해석과 예측)

  • Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.667-674
    • /
    • 2011
  • This paper discusses the analysis method of prestressed concrete girder integral abutment bridges for a 75-year bridge life and the development of prediction models for abutment displacements under thermal loading due to annual temperature fluctuation and time-dependent loading. The developed nonlinear numerical modeling methodologies considered soil-structure interaction between supporting piles and surrounding soils and between abutment and backfills. Material nonlinearity was also considered to simulate differential rotation in construction joints between abutment and backwall. Based on the numerical modeling methodologies, a parametric study of 243 analysis cases, considering five parameters: (1) thermal expansion coefficient, (2) bridge length, (3) backfill height, (4) backfill stiffness, and (5) pile soil stiffness, was performed to established prediction models for abutment displacements over a bridge life. The parametric study results revealed that thermal expansion coefficient, bridge length, and pile-soil stiffness significantly influenced the abutment displacement. Bridge length parameter significantly influenced the abutment top displacement at the centroid of the superstructure, which is similar to the free expansion analysis results. Developed prediction model can be used for a preliminary design of integral abutment bridges.

3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction (파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method (부분구조법에 의한 지반-구조물상호작용시스템의 지진응답 매개변수 연구)

  • 박형기;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • In the dynamic soil-structure interaction(SSI) analysis, numerous uncertain parameters are involved. They include the uncertainties in the definition of input motions, modeling of soil-structure interaction systems. analysis techniques, etc. This paper presents the results of parametric studies of the seismic responses of a reactor containment structure built on the viscoelastic layered soil. Among the numerous parameter, this study concentrates on the effects of definition point of the input motion, embedment of structure to the base soil, thickness of the top soil layer, and rigidity of the base soil. The substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of th SSI system computed from the ratio of dissipated energy to the strain energy for each model. From the study results, the sensitivity of each parameter on the earthquake responses has been suggested for the practical application of the substructure method of SSI analysis.

  • PDF