• Title/Summary/Keyword: 지반개량재

Search Result 29, Processing Time 0.021 seconds

A Study on the Application of Paper Fly Ash as Stabilization/Hardening Agent (지반개량재로서 제지회의 활용에 관한 연구)

  • Lee, Yong-An;Lee, Hong-Ju;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.23-33
    • /
    • 2002
  • Examined a practical use possibility of paper fly ash that is industrial by-product as a stabilization/hardening agent. Performed unconfined compression test, scanning electron microscopy and pH analysis etc. for 100% paper fly ash-soil mixtures and each paper fly ash-soil mixtures that add cement as the second addition and sulfate component of small quantity for strength promotion and so on. In all cases, strength of admixtures increased according as curing time and mixing ratio increases but almost strength is revealed at mixing early and expressed maximum strength increase efficiency at mixing ratio 9% with raw soil. Compare with the case that use paper fly ash only, in case of cement amount 10~30% was included in paper fly ash, strength of admixtures increases two times and 40% was included, that increases from five to eight times.

  • PDF

Applications of the Copper Slags as Ground Improvement Material (지반개량재로써 동제련슬래그의 활용에 관한 연구)

  • Chun, Byung-Sik;Jung, Hun-Chul;Cho, Han-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 2002
  • This study is about the applicability of copper slag as the ground improvement material. By the geo-technical characteristics of the copper slag and by the effect of consolidation and under drainage condition, it is proved that the copper slag can be used for ground improvement material as substitution for sand. As a result of laboratory tests, it was shown that the permeability of the copper slag was similar to that of sands under the vertical drainage condition. In addition, the copper slag showed higher critical hydraulic gradient than that of sand under up-ward vertical flow state. The copper slag has potential safety against piping and it has internal stability of particles. The conclusion is that the copper slag is suitable for drainage and filter material.

  • PDF

A study on the variety of strength about soft ground improvement material according to Mixed soil (혼합대상 토질에 따른 지반개량재의 강도 변화에 관한 연구)

  • Lee, Kwang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1023-1030
    • /
    • 2005
  • This study is an experiment paper about the ground improvement material which using the waste residual(slag and paper fly ash) by fire. we are research to concern according to the soil to mix the ground improvement material at show strength effectiveness. Also, we can expect a long time strength increase effectiveness as reduce the dryness contraction. They are distinguished to the clay of the reclamation ground and silty sand soil. We examined around an uniaxial compress test and scanning electron microscopy. The uniaxial stress increases according to the increase of the mixed ratio of ground improvement material and the water contents have been reduced the strength value. A clay's improvement effectiveness is big but in the silty sand soil to express small effectiveness. A ground improvement material mixing of the quantity to write can not expect the effect of Ettringite.

  • PDF

Physical Characteristics of Soft Clay Improved by PFA Stabilization Agent (제지회계 지반개량재로 처리된 연약점토의 물리적 특성)

  • 김광빈;이용안;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.561-568
    • /
    • 2002
  • PFA(Paper Fly Ash) are reclaimed mainly or used in cement industry field as mixture agent in terms of materials recycling. Recently, research for recycling PFA as embankment materials or soil stabilization agent are undergoing in geotechnical engineering field. In this study, physical characteristics of PFA stabilization agent-soil admixtures are examined in change of water content, void ratio, consistency, grain distribution, specific gravity and density. Futhermore, the physical characteristics are compared with unconfined strength as engineering characteristics. Test results showed that unconfined strength and density are increased with increasing of PFA stabilization agent mixed ratio. On the other hand, specific gravity, void ratio and water content are decreased with increasing of PFA stabilization agent mixed ratio. It would be concluded that natural high water content ratio weak soil could be highly improved engineering and physical characteristics with PFA stabilization agent

  • PDF

Evaluation of Applicability of CMD-SOIL Recycled Resources as Ground Improvement Material for Deep Mixing Method (심층혼합공법용 지반개량재로서 순환자원을 재활용한 CMD-SOIL의 적용성 평가)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Dae-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • As port development in soft ground is actively promoted for international logistics and transportation, the Deep Mixing Method (DMM) is continuously applied to form an improved column body directly in the ground by mixing cement with soil to secure the stability of the structure. However, in the case of cement, there is a problem of emitting a lot of greenhouse gases during the production process, so the development and use of new alternative materials are socially required to achieve the national goal of carbon neutrality. Accordingly, in this study, CMD-SOIL, developed to induce a hardening reaction similar to cement by recycling recycled resources, was used as a ground improvement material for the DMM. In addition, it was attempted to determine the possibility of replacing cement by conducting on-site test construction and evaluating applicability. As a result of the study, the compressive strength of CMD-SOIL compared to the design reference strength was 1.46 to 2.64 times higher in the field mixing test and 1.2 to 5.03 times higher than in the confirmed boring. In addition, the ratio (λ) of the compressive strength in the field to the design reference strength was 0.63 to 1.14, which was similar to the previous research results. Therefore, in the case of CMD-SOIL, it is possible to express the compressive strength necessary to secure stability, and there is no difference in applicability compared to existing materials such as ordinary portland cement and blast furnace slag cement, so it was analyzed that it could be used as a ground improvement material for the DMM.

The Effect of KOB-Soil as a Soil Amendment on Turfgrass Growth (종합 토양개량재 KOB-Soil이 잔디 생육에 미치는 영향)

  • 이상재
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • This study was conducted to figure out the effect of KOB Soil on creeping bentgrass‘Cobra’, Kentucky bluegrass (KB)‘Midnight’75% + Perennial ryegrass (PR)‘Palmer III’25%. This experiment was conducted from September 1, 2001 to August 31, 2002 at Hwajoulryong in Jeongsun County, Gwangwon-do. Treatments were Sand 80% + Peatmoss 20%, Sand 80% +KOB-Soil (No. 1) 20%, and Sand 80% +KOB-Soil (No. 2) 20%. Treatments with KOB Soils was superior to control fer the leaf length, number of leaf, turf quality and root length in Creeping bengrass and Kentucky bluegrass + Perennial ryegrass.

Development of Eco-friendly Binder Using Waste Oyster Shells (친환경 굴껍질 고화재(R) 개발)

  • Gil-Lim 한국해양연구원, 연안항만공학본부;Chae Kwang-Suk;Paik Seung-Chul;Yoon Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.79-85
    • /
    • 2005
  • An experimental study was carried out to investigate the recycling possibility of waste oyster shells, which induce environmental pollutions by piling up out at the open or the temporary reclamation. The purpose of this study is to develope eco-friendly binder using waste oyster shells, and to reinforce dredged soils fur soft soil improvement. In this paper, a series of laboratory tests including compressive strength tests were performed to evaluate strength characteristics of soils treated by developed binder with different water content of dredged soils, mixing rates of binder, curing days. Based on test results, eco-friendly binders manufactured from waste oyster shells were estimated as good resource materials for soft soil improvements.

Diagnosis and of Improvement of Brined Drainage Problems on Fairway Soil (페어웨이 지반 토양의 배수불량 원인분석과 개선방안)

  • Lee, Jung-Ho;Lee, Jong-Min;Joo, Young-Kyoo
    • Proceedings of the Turfgrass Society of Korea Conference
    • /
    • 2011.02a
    • /
    • pp.11-21
    • /
    • 2011
  • 경기도 여주군의 R골프장에서 페어웨이 건설 시 토양조사 및 적절한 토양개량이 실시되지 않아 배수불량지역의 발생한 것으로 한 것으로 분석되었다. 원인 분석결과 토양 경화로 인한 토양 물리성이 악화되어 있어, 투수에 의한 토양 하부층으로의 배수능력이 저조하여 배수 불량의 직접 원인이 되었다. 또 재배 지역의 토양과 이식 지역의 토성이 달라 이식 후 토양에 이질층이 형성되어 수분의 하층 이동이 원활하지 못해 배수 불량의 원인되고 잔디의 생육이 나빠지게 되었다. 배수불량의 결과로 인해 토양 내 산소가 부족하게 되어 토양이 환원 상태가 되면서 혐기성 미생물의 생육이 증가하고, 메탄가스가 축적되고 악취를 유발시키며 토양의 공기순환이 자유롭지 못해 식재된 잔디의 뿌리 생장에 악영향을 주어 결과적으로 잔디 생육이 불량하게 되는 연쇄적인 문제가 발생하였다. 골프장 운영 중 잔디 지반의 문제로 잔디 생육 불량을 초래 할 수 있는 여러 가지 요인들을 제거하기 위해 골프코스 건설시 모재 토양의 사전 조사 및 잔디 지반으로서의 적합성에 대하여 반드시 실험 분석하여야 하며, 건설 후 지반의 배수불량을 개선하기 위해서 배수구 설치, Sand capping, 잔디 보식, 토양개량재의 사용, 배토 등 경종적 관리 등의 방법을 이용하여 배수불량지역의 개선과 잔디생육 정상화를 시행하였다.

  • PDF

Effect of Polymer, Calcium, Perlite and Chitosan in Organic Amendment on Growth in Kentucky Bluegrass (유기질개량재에서 폴리머, 칼슘, 펄라이트 및 키토산 성분이 켄터키 블루그래스의 생장에 미치는 효과)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.3 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • Research was initiated in greenhouse to investigate effects of polymer, calcium, perlite and chitosan on the growth of Kentucky bluegrass (KB). A total of 24 treatment combinations were used in the study. Treatments were made of water-swelling polymer (WSP), calcium, perlite, and chitosan in soil organic amendment (SOA). Significant differences were observed in germination rate, turfgrass coverage, turfgrass density and top growth among treatments. Germination rate, density and plant height varied with time after seeding. A proper mix of WSP is considered to be lower than 3% for turfgrass coverage and density. Regarding survival capability and top growth, however, it was good under 6%. Overall KB growth was more influenced by calcium and perlite than chitosan. Calcium and perlite were the most effective elements for early survival capacity and turfgrass density, respectively. But no effect was found by chitosan. Top growth increased with three elements, being perlite > calcium > chitosan. The chitosan was effective in early germination, but there was no effect on top growth until 3 weeks, when compared with others. A further study is needed for investigating the effect of these materials on the growth characteristics in mixtures of sand and SOA before a field application.

Stabilization Mechanism for Sands Treated with Organic Acids from Laboratory Tests (유기산 재료를 이용한 사질토의 안정화 메커니즘에 관한 연구)

  • Ki, Jungsu;Yee, Eric;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.39-46
    • /
    • 2013
  • The field of ground amelioration, many construction methods have been developed more prosperously up to now, but even now, the majority focuses on the improvement of ground strength. And they could not suggest concrete solutions to the occurrence of environmental issues. To address this problem, soil improvement methods employing organic acid materials have recently been developed as eco-friendly technologies for increasing the soil strength, but details regarding the basic stabilization mechanism are not known yet. Against this background, this research was conducted to examine the soil stabilization mechanism; for this purpose, unconfined compressive strength and pH tests were conducted by using an improved eco-friendly organic acid material. The test results revealed that the samples processed with the organic acid showed a considerable increase in the unconfined compressive strength over time as compared to the strength of the samples that were processed without the organic acid. It was also confirmed that the organic acid material promoted microbial breeding and improved the soil structure by reducing the volume of the voids in the soil. Therefore, the sustainable development of this method needs to be analysed more in the future.