• Title/Summary/Keyword: 지면기울기

Search Result 15, Processing Time 0.034 seconds

Design of a Shoe-Mounted Ground Inclination Measurement System Using Time of Flight Sensors (ToF 거리 센서를 이용한 신발 착용형 지면 기울기 측정 시스템 설계)

  • Hee-Chan Kim;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1005-1012
    • /
    • 2024
  • Wearable walking assistance robots for people with complete paralysis utilize trajectory tracking control methods. In inclined environments, it is important to generate appropriate walking trajectories based on ground inclination. This paper presents the design of a shoe-mounted ground inclination measurement system using Inertial Measurement Unit (IMU) sensors and Time-of-Flight (ToF) sensors. The proposed system measures the absolute angle of the foot using the IMU sensor and the relative angle between the foot and the ground using the ToF sensor to derive the absolute angle of the ground. Walking experiments conducted on flat and inclined surfaces confirmed the feasibility of measuring ground inclination.

Development of an Algorithm for Compensating Ground Inclination to Expand an Operational Field of a Missile Launcher (발사플랫폼의 운용성 확장을 위한 지면기울기 보상기법)

  • Chung, Jae-Wook;Kim, Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • When missile is launched, a launcher needs to be leveled with accuracy to avoid the systems's instability. In general, a launcher is leveled by adjusting the stroke of leveling jacks; however, it is still challenge to control the leveling jacks fast and accurately. This paper thus proposed an innovative algorithm for compensating ground inclination of a missile launcher to expand operational field of a missile launcher. Using two inclinometers attached on a launcher, a base jack for leveling is selected and the mixed gradient where launcher stands on can be estimated. Due to the limited stroke, the launcher can compensate its ground inclination within maximum stroke margin. Then, the ground inclination of a launcher can be compensated by calculated angle using weighting factors. The effectiveness of proposed algorithm is proved with a prototype missile launcher.

Implementation of Dynamic Walking of Biped Walking Robot using Intelligent Sensor Fusion System (지능형 센서 퓨전 시스템을 이용한 이족보행 로봇의 동적보행 구현)

  • Kho, Jae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1829_1830
    • /
    • 2009
  • 본 논문은 로봇이 처한 환경의 실시간 상황 인식을 위한 지능형 센서 인터페이스를 연구 개발하여 다양한 환경에서의 안정되고 유연한 이족 보행 로봇의 동적 보행 제어를 수행하였다. 자이로 및 가속도 센서를 적용한 실험을 통하여 간단한 보상만으로도 로봇의 안정도가 확연히 개선되는 사실을 알 수 있었다. 미지의 외력이 가해져 로봇이 불안정한 상태가 계속될 때 상체의 기울기 보정이 무게중심을 보다 안정된 영역쪽으로 이동시켜 곧바로 균형을 잡아준다. 또한 압력센서를 이용한 ZMP 측정과 이를 통한 균형 제어 실험 결과 뛰어난 보행을 구현할 수 있었다. 불규칙적인 지면에서도 발바닥에 가해지는 압력 분포가 변화하는 것을 이용하여 ZMP가 항상 로봇의 발바닥 지지 영역 안으로 오도록 제어하였다. 이것을 통해 로봇은 경사면을 보행하거나 기울기가 변하는 바닥에서 쓰러지지 않고 안정한 상태를 유지하였다.

  • PDF

A balance maintain system of Stewart platform using AHRS (AHRS를 이용한 스튜어트 플랫폼의 평형 유지 시스템)

  • Kang, Hyunwoo;Kang, Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.4
    • /
    • pp.37-41
    • /
    • 2013
  • A balance maintain system of Stewart platform using AHRS(Attitude and Heading Reference System) sensor is introduced. The Stewart platform is used for controlling a standing plate to keep up horizontal level at any slopes. To know current leaned degrees, AHRS sensor is used. We made feed-back system that AHRS sensor sends current status and the Stewart platform revises top plate to be equilibrium state.

Running stability analysis of the Semi-Crawler Type Mini-Forwarder by Using a Dynamic Analysis Program (동역학분석 프로그램을 이용한 반궤도식 임내작업차의 주행안정성 분석)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.98-103
    • /
    • 2015
  • This study was conducted to analyze the running stability of a semi-crawler type mini-forwarder. The running stability analysis was performed by using a dynamic analysis program, RecurDyn. Physical properties of the semi-crawler type mini-forwarder was performed by using 3D CAD modeler, AutoCAD 3D. As a result from the computer simulation of stationary sideways overturning, it was found that the semi-crawler type mini-forwarder runs safely on a road with a slope not bigger than $20^{\circ}$ regardless whether it is empty or loaded, but in case of a road with a slope bigger than $20^{\circ}$, it is assumed that it is difficult for the car to run safely due to some dangers. In addition, it was found that the critical slope of its sideways overturning gets much smaller when empty since the location of its gravity center is elevated and much higher when it is loaded. As a result from the computer simulation of its hill-climbing ability, since the running speed is unstable in case of a road with a vertical slope not smaller than $28^{\circ}$, it is assumed that it is safe to drive it on a road with a slope not bigger than $28^{\circ}$. Taking a look at the result from an analysis of the running safety when it passes an obstacle, it was observed that a front tire comes off the ground when the running speed of the car is 5 and 4 km per hour respectively when it is empty and loaded while the gravity center of the front tire is watched. When taking a look at the changes in the location of the gravity center of the rear wheel crawler shaft, it was not found that the shaft comes off the ground at the test speeds both when it is empty and loaded.

An Analysis on the Degradation of Elevation Angle Accuracy Due to the Multi-Path Effect Using a Phased Array Antenna and the Beam Pattern Optimization to Minimize Its Degradation (위상배열 안테나를 활용한 다중 경로 효과에 의한 고각 정확도 열화 분석 및 열화 최소화를 위한 빔 패턴 최적화)

  • Kim, Young-Wan;Lee, JaeMin;Chae, Heeduck;Jin, Hyung-suk;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1036-1043
    • /
    • 2016
  • In this paper, an analysis about the elevation angle accuracy degradation of an APAR(Airport Precision Approach Radar) due to the multi-path effect using a phased array antenna was performed. An APAR installed around a runway of airport will be continuously affected in a runway surface of the fixed environment. In this paper, an analysis about the elevation angle accuracy degradation of APAR due to the multi-path effect of runway surface was conducted through a calculation of monopluse slope and sum/difference beam pattern analysis of array antenna. Also, a difference pattern for monopulse to minimize this degradation was optimized in an appropriate configuration to improve a elevation angle accuracy. Finally, a degree of improvement of elevation angle accuracy was confirmed by calculating a monopulse slope including the ground reflection after applying optimized difference patterns of array antenna.

Effects of induced stereoacuity reduction on obstacle crossing (입체시력 감소가 장애물 보행에 미치는 영향)

  • Woo, Byung-Hoon;Sul, Jeong-Dug
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.5
    • /
    • pp.829-840
    • /
    • 2015
  • The purpose of this study was to investigated into the kinematics and ground reaction force for gait on induced stereoacuity in normal subjects with normal sight. Eighteen subjects who passed the stereoacuity testing were participated in the experiment(age: 22.1±2.7 years, height: 176.8±4.4 cm, weight: 67.6±5.8 kg). The study method adopted 3D analysis with six cameras and ground reaction force with two force-plates. The results were as follows; In gait velocity, obstacle crossing gait was slower than flat gait. In angular displacement of hip joint, mostly obstacle crossing gait was more flexed than flat gait. In angular displacement of knee joint, obstacle crossing gait was more flexed than flat gait, and stereoacuity reduction gait in TO and FC2 were more flexed than normal vision gait. In angular displacement of ankle joint, obstacle crossing gait in FC2 was more flexed than flat gait. In trunk tilt, obstacle crossing gait in MSt, TO and MSw were more extended than flat gait. In GRF, there was no significant in Fx, obstacle crossing gait in right and left foot were bigger propulsion force than flat gait, obstacle crossing gait in right and left foot were bigger braking force than normal vision gait in Fy, and obstacle crossing gait in right and left foot were bigger than flat gait in peak F1 and peak F2 of Fz, and stereoacuity reduction gait in right foot was lower than normal vision gait in valley force of Fz.

Development and assessment of WRF-Hydro in East Asia (동아시아 WRF-Hydro 구축 및 평가)

  • Lee, Jaehyeong;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.425-425
    • /
    • 2022
  • 동아시아 지역은 몬순 영향으로 계절적인 수자원 변동성이 매우 크고 홍수 및 가뭄과 같은 수재해 피해가 빈번히 발생하고 추세이다. 본 연구에서는 동아시아의 수자원 관리에 활용하기 위해 수문 모형 중 하나인 WRF-Hydro (Weather Research and Forecast and Model Hydrological modeling extension package) 모형을 구축하였다. WRF-Hydro 모형은 미국 NCAR (National Center for Atmospheric Research)에서 개발된 커뮤니티형 고해상도 예측모델로 미국 등에서 활발히 사용되고 있으나, 동아시아 지역에 적용된 연구는 없다. 따라서 모형의 동아시아 적용 가능성에 대한 불확실성이 높다. 본 연구에서는 WRF-Hydro 모형을 0.25°의 공간해상도로 동아시아 대상으로 구축하였고, 기상 및 지면 특성과 유역자료를 활용한 머신러닝 방법으로 파라미터 보정을 시행하여 2006년부터 2015년까지 구동하였다. 머신러닝을 통해 지역특성이 고려된 WRF-Hydro 모형은 표면유출, 보수깊이, 표면 거칠기, 표면 기울기와 같은 매개변수를 보정하였다. 모형 평가를 위해 GRDC (Global Runoff Database Center (GRDC), GLDAS (Global Land Data Assimilation System), ESA-CCI (European Space Agency Climate Change Initiative), MODIS (Moderate Resolution Imaging Spectroradiometer)에서 제공하는 관측 유출량, 토양수분, 증발산량을 비교, 분석하여 동아시아 적용 적절성에 대해 검토하였다.

  • PDF

Differences in percussion-type measurements of implant stability according to height of healing abutments and measurement angle (임플란트 healing abutment 높이와 타진각도에 따른 타진방식 임플란트 안정성 측정기기의 수치 차이)

  • Park, Yang-Hoon;Leesungbok, Richard;Lee, Suk-Won;Paek, Janghyun;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.278-286
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effect of healing abutment height and measurement angle on implant stability when using Periotest and AnyCheck. Materials and methods: 60 implants were placed into artificial bone blocks. After implant insertion, 2, 3, 4 and 5 mm healing abutments were installed on 15 specimens, respectively. Insertion torque value, implant stability test, Periotest value were measured. Insertion torque value was controlled between 45 - 55 Ncm. AnyCheck was used for measuring implant stability test and Periotest M was used for measuring Periotest value. Implant stability test and Periotest value were measured at the angles of 0 and 30 degrees to the horizontal plane. Measured values were analyzed statistically. Results: Insertion torque value had no significant difference among groups. When healing abutment height was higher, implant stability test and Periotest value showed lower stability. Also when measurement angle was decreased, implant stability test and Periotest value showed lower stability. Conclusion: When measuring stability of implants with percussion type devices, measured values should be evaluated considering height of healing abutments and measurement angle.

STUDY ON THE MORPHOLOGICAL VARIATIONS OF MUSSEL MYTILUS CORUSCUS GOULD (담치의 형태변이에 관한 연구)

  • YOO Sung Kyoo;KANG Yong-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.87-90
    • /
    • 1974
  • The followings are the results of study about morphological variation of mussel, Mytilus coruscus collected respectively from Sanyang-myeon Tongyeong-goon Gyeongnam on 13th January, Yeonwha-do Yokji-myeon Tongyeong-goon Gyeongnam on 15th May and down below the Yeong-do Bridge Busan on 20th August, 1964. The biggest mussel of the above three areas have been from Yeong-do Bridge, whose shell height is 164.1 mm, shell length 77.8mm, shell breadth 52.2mm, total weight 291,9g and shell length is as follows : from Yeong-do Bridge L=0.4954H + 1.9516, from Sanyang-myeon L=0.3718H + 14.145, from Yeonwha-do L=0.4074H + 9,6610 The relationship between shell height and shell breadth is as follows : from Yeong-do Bridge B=0.3426H + 0.2052, from Sanyang-myeon B=0.3084H + 3.6183, from Yeonwha-do B=0.3507H + 0.8028 In view of the above relationship, it is concluded that the slope value of mussel, nearer to the inshore from the off-sea, is similar to that of M. edulis, from which are can presume that M. coruscus could be changed in shell form according to its environment. Growth curve between total weight and shell height is as follows : from Yeong-do Bridge W=0. 00020469 $$H^{2.79745}$ from Sanyang-myeon W=0.00061512$H^{2.53708}$ from Yeonwha-do W=0.00016965$H^{2.83960}$

  • PDF