• Title/Summary/Keyword: 지능형 데이터 분석

Search Result 639, Processing Time 0.038 seconds

Implementation of on Expert System to Supervise GIS Arrester Facilities (GIS 피뢰설비 관리를 위한 전문가 시스템 구현)

  • Kil, Gyung-Suk;Song, Jae-Yong;Kim, Il-Kwon;Moon, Seung-Bo;Kwon, Jang-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • This paper dealt with the design and implementation of an expert system to monitor and diagnose the lightning arresters in GIS substations. The expert system consists of a data acquisition module(DAM) based on microprocessor and diagnostic algorithms. The DAM measures and analyzes several parameters necessary for the arrester diagnosis such as system voltages, leakage current components, and temperatures. Also, it includes an intelligent surge counter which can record the date and tin, the polarity, and the amplitude of surge currents. All the data acquired is transmitted to a remote computer by a low rate wireless network specified in IEEE 802.15.4 to avoid electromagnetic intereference under high voltage and large current environments. The decision-making for the arrester diagnosis completes with a Java Expert System Shell(JESS) which is composed of a knowledge base, an inference engine and a graphic user interface(GUI).

멀티미디어 서비스의 환경변화 및 COSMOS 멀티미디어 운영체제

  • 송동호;임영환
    • Information and Communications Magazine
    • /
    • v.11 no.6
    • /
    • pp.37-54
    • /
    • 1994
  • Technical innovation on multimedia data processing brings us new multimedia services. Multimedia services are classified into five groups : TVs, computers, telecommunications, periperals, and softwares. This paper surveys on the services in various aspects and, in particular, computer areas are discussed in detail. To provide the services, major subsystems such as highspeed networks, operating systems, intelligent agent based user interfaces are discussed. In particular, multimedia operating systems are the most actively investigating research area as an infrastructure of multimedia computer systems to provide integrated multimedia services. So, the trends of new multimedia operating systems are analyzed and COSMOS (Collaborative Object Sharing for Multimedia Operating System) multimedia group presentation is discussed. The characteristics, model and abstract data structure of COSMOS is described. The performance analysis of 3 person conference system using audio, video and shared graphic editor on COSMOS shows that taking integrated multimedia operating system approach leads changing of new multimedia service environments.

  • PDF

Design of an Inductive Coupler for Broadband Powerline Communication for Real-Time Monitoring of Distribution Automation System (배전자동화시스템의 실시간 감시를 위한 광대역 전력선통신용 유도성 커플러 설계)

  • Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1618-1623
    • /
    • 2019
  • In this paper, inductive couplers realizing broadband powerline communication (PLC) are fabricated using Fe-based nanocrystalline alloy and their performance is analyzed. As a result of the field tests using the distribution automation system (DAS), the couplers achieve comparatively excellent data communication in the principal frequency band of broadband PLC although there is a difference in communication rate depending on the presence or absence of a branch. In addition, it has been confirmed that the communication speed is maintained for a real-time transmission even in a high current environment although there is a difference in the transmission rate depending on the distance. Hence, it is considered that the inductive couplers can be used as a core device to realize the intelligent power network by exploiting them for the monitoring and remote controlling of the power plant equipments for the DAS located in the inaccessible areas.

Model Optimization for Supporting Spiking Neural Networks on FPGA Hardware (FPGA상에서 스파이킹 뉴럴 네트워크 지원을 위한 모델 최적화)

  • Kim, Seoyeon;Yun, Young-Sun;Hong, Jiman;Kim, Bongjae;Lee, Keon Myung;Jung, Jinman
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • IoT application development using a cloud server causes problems such as data transmission and reception delay, network traffic, and cost for real-time processing support in network connected hardware. To solve this problem, edge cloud-based platforms can use neuromorphic hardware to enable fast data transfer. In this paper, we propose a model optimization method for supporting spiking neural networks on FPGA hardware. We focused on auto-adjusting network model parameters optimized for neuromorphic hardware. The proposed method performs optimization to show higher performance based on user requirements for accuracy. As a result of performance analysis, it satisfies all requirements of accuracy and showed higher performance in terms of expected execution time, unlike the naive method supported by the existing open source framework.

Development of Smart Air Car Seat Control System for Automatic Air Conditioning using IoT Sensor (IoT 센서를 이용한 공기 자동조절 스마트 에어카시트 제어 시스템 개발)

  • Kim, Dae-Hun;Jeong, Sueun;Park, Suhyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.208-210
    • /
    • 2021
  • As the number of objects connected to the Internet increases rapidly, intelligent device development projects are gradually expanding that provide direct value to humans, away from simple monitoring functions, including sensors and communication functions, or delivery to servers.It is expected that the device will develop a technology that analyzes surrounding sensing information and changes the surrounding environment in consideration of users' preferences or safety. By establishing a biosignal measurement system in a developed product that can bring various effects using air, it will be possible to grasp the user's condition through a pattern of change in pressure distribution when seated. This paper proposes a construction system that enhances the comfort of using an air car seat through contact between a temperature measurement sensor and a user, and enables effective management of measured biosignals by linking them with an air pump control system.

  • PDF

A Study on the Decision Factors for AI-based SaMD Adoption Using Delphi Surveys and AHP Analysis (델파이 조사와 AHP 분석을 활용한 인공지능 기반 SaMD 도입 의사결정 요인에 관한 연구)

  • Byung-Oh Woo;Jay In Oh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 2023
  • With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.

Design of Deep Learning-based Tourism Recommendation System Based on Perceived Value and Behavior in Intelligent Cloud Environment (지능형 클라우드 환경에서 지각된 가치 및 행동의도를 적용한 딥러닝 기반의 관광추천시스템 설계)

  • Moon, Seok-Jae;Yoo, Kyoung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.473-483
    • /
    • 2020
  • This paper proposes a tourism recommendation system in intelligent cloud environment using information of tourist behavior applied with perceived value. This proposed system applied tourist information and empirical analysis information that reflected the perceptual value of tourists in their behavior to the tourism recommendation system using wide and deep learning technology. This proposal system was applied to the tourism recommendation system by collecting and analyzing various tourist information that can be collected and analyzing the values that tourists were usually aware of and the intentions of people's behavior. It provides empirical information by analyzing and mapping the association of tourism information, perceived value and behavior to tourism platforms in various fields that have been used. In addition, the tourism recommendation system using wide and deep learning technology, which can achieve both memorization and generalization in one model by learning linear model components and neural only components together, and the method of pipeline operation was presented. As a result of applying wide and deep learning model, the recommendation system presented in this paper showed that the app subscription rate on the visiting page of the tourism-related app store increased by 3.9% compared to the control group, and the other 1% group applied a model using only the same variables and only the deep side of the neural network structure, resulting in a 1% increase in subscription rate compared to the model using only the deep side. In addition, by measuring the area (AUC) below the receiver operating characteristic curve for the dataset, offline AUC was also derived that the wide-and-deep learning model was somewhat higher, but more influential in online traffic.

Edutech in the Era of the 4th Industrial Revolution (4차 산업혁명 시대의 에듀테크)

  • Park, Ji Su;Gil, Joon-Min
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.11
    • /
    • pp.329-331
    • /
    • 2020
  • Edutech is a compound word of education and technology, and is an educational paradigm in the era of the 4th industrial revolution. This refers to next-generation education using information and communication technology (ICT) such as big data, artificial intelligence (AI), robots, and virtual reality (VR) of the 4th industrial revolution. e-Learning is being used as an online lecture for education in ICT, but edutech is attracting attention along with e-learning as the feeding of non-face-to-face education has rapidly increased due to COVID-19. Therefore, this paper summarizes the reviewed papers on the blockchain-based badge service platform, simulation-based collaborative e-Learning system, video English dictionary, and blockchain-based access control audit system.

Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System (국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례)

  • Jo, Wongi;Kim, Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.77-97
    • /
    • 2019
  • The large amount of data that emerges from the initial connection environment of the Fourth Industrial Revolution is a major factor that distinguishes the Fourth Industrial Revolution from the existing production environment. This environment has two-sided features that allow it to produce data while using it. And the data produced so produces another value. Due to the massive scale of data, future information systems need to process more data in terms of quantities than existing information systems. In addition, in terms of quality, only a large amount of data, Ability is required. In a small-scale information system, it is possible for a person to accurately understand the system and obtain the necessary information, but in a variety of complex systems where it is difficult to understand the system accurately, it becomes increasingly difficult to acquire the desired information. In other words, more accurate processing of large amounts of data has become a basic condition for future information systems. This problem related to the efficient performance of the information system can be solved by building a semantic web which enables various information processing by expressing the collected data as an ontology that can be understood by not only people but also computers. For example, as in most other organizations, IT has been introduced in the military, and most of the work has been done through information systems. Currently, most of the work is done through information systems. As existing systems contain increasingly large amounts of data, efforts are needed to make the system easier to use through its data utilization. An ontology-based system has a large data semantic network through connection with other systems, and has a wide range of databases that can be utilized, and has the advantage of searching more precisely and quickly through relationships between predefined concepts. In this paper, we propose a defense ontology as a method for effective data management and decision support. In order to judge the applicability and effectiveness of the actual system, we reconstructed the existing air force munitions situation management system as an ontology based system. It is a system constructed to strengthen management and control of logistics situation of commanders and practitioners by providing real - time information on maintenance and distribution situation as it becomes difficult to use complicated logistics information system with large amount of data. Although it is a method to take pre-specified necessary information from the existing logistics system and display it as a web page, it is also difficult to confirm this system except for a few specified items in advance, and it is also time-consuming to extend the additional function if necessary And it is a system composed of category type without search function. Therefore, it has a disadvantage that it can be easily utilized only when the system is well known as in the existing system. The ontology-based logistics situation management system is designed to provide the intuitive visualization of the complex information of the existing logistics information system through the ontology. In order to construct the logistics situation management system through the ontology, And the useful functions such as performance - based logistics support contract management and component dictionary are further identified and included in the ontology. In order to confirm whether the constructed ontology can be used for decision support, it is necessary to implement a meaningful analysis function such as calculation of the utilization rate of the aircraft, inquiry about performance-based military contract. Especially, in contrast to building ontology database in ontology study in the past, in this study, time series data which change value according to time such as the state of aircraft by date are constructed by ontology, and through the constructed ontology, It is confirmed that it is possible to calculate the utilization rate based on various criteria as well as the computable utilization rate. In addition, the data related to performance-based logistics contracts introduced as a new maintenance method of aircraft and other munitions can be inquired into various contents, and it is easy to calculate performance indexes used in performance-based logistics contract through reasoning and functions. Of course, we propose a new performance index that complements the limitations of the currently applied performance indicators, and calculate it through the ontology, confirming the possibility of using the constructed ontology. Finally, it is possible to calculate the failure rate or reliability of each component, including MTBF data of the selected fault-tolerant item based on the actual part consumption performance. The reliability of the mission and the reliability of the system are calculated. In order to confirm the usability of the constructed ontology-based logistics situation management system, the proposed system through the Technology Acceptance Model (TAM), which is a representative model for measuring the acceptability of the technology, is more useful and convenient than the existing system.

Probe Vehicle Data Collecting Intervals for Completeness of Link-based Space Mean Speed Estimation (링크 공간평균속도 신뢰성 확보를 위한 프로브 차량 데이터 적정 수집주기 산정 연구)

  • Oh, Chang-hwan;Won, Minsu;Song, Tai-jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.70-81
    • /
    • 2020
  • Point-by-point data, which is abundantly collected by vehicles with embedded GPS (Global Positioning System), generate useful information. These data facilitate decisions by transportation jurisdictions, and private vendors can monitor and investigate micro-scale driver behavior, traffic flow, and roadway movements. The information is applied to develop app-based route guidance and business models. Of these, speed data play a vital role in developing key parameters and applying agent-based information and services. Nevertheless, link speed values require different levels of physical storage and fidelity, depending on both collecting and reporting intervals. Given these circumstances, this study aimed to establish an appropriate collection interval to efficiently utilize Space Mean Speed information by vehicles with embedded GPS. We conducted a comparison of Probe-vehicle data and Image-based vehicle data to understand PE(Percentage Error). According to the study results, the PE of the Probe-vehicle data showed a 95% confidence level within an 8-second interval, which was chosen as the appropriate collection interval for Probe-vehicle data. It is our hope that the developed guidelines facilitate C-ITS, and autonomous driving service providers will use more reliable Space Mean Speed data to develop better related C-ITS and autonomous driving services.