• Title/Summary/Keyword: 지능형 데이터 분석

Search Result 639, Processing Time 0.024 seconds

Exploring Factors to Minimize Hallucination Phenomena in Generative AI - Focusing on Consumer Emotion and Experience Analysis - (생성형AI의 환각현상 최소화를 위한 요인 탐색 연구 - 소비자의 감성·경험 분석을 중심으로-)

  • Jinho Ahn;Wookwhan Jung
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • This research aims to investigate methods of leveraging generative artificial intelligence in service sectors where consumer sentiment and experience are paramount, focusing on minimizing hallucination phenomena during usage and developing strategic services tailored to consumer sentiment and experiences. To this end, the study examined both mechanical approaches and user-generated prompts, experimenting with factors such as business item definition, provision of persona characteristics, examples and context-specific imperative verbs, and the specification of output formats and tone concepts. The research explores how generative AI can contribute to enhancing the accuracy of personalized content and user satisfaction. Moreover, these approaches play a crucial role in addressing issues related to hallucination phenomena that may arise when applying generative AI in real services, contributing to consumer service innovation through generative AI. The findings demonstrate the significant role generative AI can play in richly interpreting consumer sentiment and experiences, broadening the potential for application across various industry sectors and suggesting new directions for consumer sentiment and experience strategies beyond technological advancements. However, as this research is based on the relatively novel field of generative AI technology, there are many areas where it falls short. Future studies need to explore the generalizability of research factors and the conditional effects in more diverse industrial settings. Additionally, with the rapid advancement of AI technology, continuous research into new forms of hallucination symptoms and the development of new strategies to address them will be necessary.

Big Data Model for Analyzing Plant Growth Environment Informations and Biometric Informations (농작물 생육환경정보와 생체정보 분석을 위한 빅데이터 모델)

  • Lee, JongYeol;Moon, ChangBae;Kim, ByeongMan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.15-23
    • /
    • 2020
  • While research activities in the agricultural field for climate change are being actively carried out, smart agriculture using information and communication technology has become a new trend in line with the Fourth Industrial Revolution. Accordingly, research is being conducted to identify and respond to signs of abnormal growth in advance by monitoring the stress of crops in various outdoor environments and soil conditions. There are also attempts to analyze data collected in real time through various sensors using artificial intelligence techniques or big data technologies. In this paper, we propose a big data model that is effective in analyzing the growth environment informations and biometric information of crops by using the existing relational database for big data analysis. The performance of the model was measured by the response time to a query according to the amount of data. As a result, it was confirmed that there is a maximum time reduction effect of 23.8%.

COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech (품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지)

  • Jihyeok Kim;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.267-283
    • /
    • 2023
  • The COVID-19 pandemic, which began in December 2019 and continues to this day, has left the public needing information to help them cope with the pandemic. However, COVID-19-related fake news on social media seriously threatens the public's health. In particular, if fake news related to COVID-19 is massively spread with similar content, the time required for verification to determine whether it is genuine or fake will be prolonged, posing a severe threat to our society. In response, academics have been actively researching intelligent models that can quickly detect COVID-19-related fake news. Still, the data used in most of the existing studies are in English, and studies on Korean fake news detection are scarce. In this study, we collect data on COVID-19-related fake news written in Korean that is spread on social media and propose an intelligent fake news detection model using it. The proposed model utilizes the frequency information of parts of speech, one of the linguistic characteristics, to improve the prediction performance of the fake news detection model based on Doc2Vec, a document embedding technique mainly used in prior studies. The empirical analysis shows that the proposed model can more accurately identify Korean COVID-19-related fake news by increasing the recall and F1 score compared to the comparison model.

Development of Metrics to Measure Reusability Quality of AIaaS

  • Eun-Sook Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.147-153
    • /
    • 2023
  • As it spreads to all industries of artificial intelligence technology, AIaaS equipped with artificial intelligence services is emerging. In particular, non-IT companies are suffering from the absence of software experts, difficulties in training big data models, and difficulties in collecting and analyzing various types of data. AIaaS makes it easier and more economical for users to build a system by providing various IT resources necessary for artificial intelligence software development as well as functions necessary for artificial intelligence software in the form of a service. Therefore, the supply and demand for such cloud-based AIaaS services will increase rapidly. However, the quality of services provided by AIaaS becomes an important factor in what is required as the supply and demand for AIaaS increases. However, research on a comprehensive and practical quality evaluation metric to measure this is currently insufficient. Therefore, in this paper, we develop and propose a usability, replacement, scalability, and publicity metric, which are the four metrics necessary for measuring reusability, based on implementation, convenience, efficiency, and accessibility, which are characteristics of AIaaS, for reusability evaluation among the service quality measurement factors of AIaaS. The proposed metrics can be used as a tool to predict how much services provided by AIaaS can be reused for potential users in the future.

Digital Signage service through Customer Behavior pattern analysis

  • Shin, Min-Chan;Park, Jun-Hee;Lee, Ji-Hoon;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.53-62
    • /
    • 2020
  • Product recommendation services that have been researched recently are only recommended through the customer's product purchase history. In this paper, we propose the digital signage service through customers' behavior pattern analysis that is recommending through not only purchase history, but also behavior pattern that customers take when choosing products. This service analyzes customer behavior patterns and extracts interests about products that are of practical interest. The service is learning extracted interest rate and customers' purchase history through the Wide & Deep model. Based on this learning method, the sparse vector of other products is predicted through the MF(Matrix Factorization). After derive the ranking of predicted product interest rate, this service uses the indoor signage that can interact with customers to expose the suitable advertisements. Through this proposed service, not only online, but also in an offline environment, it would be possible to grasp customers' interest information. Also, it will create a satisfactory purchasing environment by providing suitable advertisements to customers, not advertisements that advertisers randomly expose.

A Study on the Media Recommendation System with Time Period Considering the Consumer Contextual Information Using Public Data (공공 데이터 기반 소비자 상황을 고려한 시간대별 미디어 추천 시스템 연구)

  • Kim, Eunbi;Li, Qinglong;Chang, Pilsik;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.95-117
    • /
    • 2022
  • With the emergence of various media types due to the development of Internet technology, advertisers have difficulty choosing media suitable for corporate advertising strategies. There are challenging to effectively reflect consumer contextual information when advertising media is selected based on traditional marketing strategies. Thus, a recommender system is needed to analyze consumers' past data and provide advertisers with personalized media based on the information consumers needs. Since the traditional recommender system provides recommendation services based on quantitative preference information, there is difficult to reflect various contextual information. This study proposes a methodology that uses deep learning to recommend personalized media to advertisers using consumer contextual information such as consumers' media viewing time, residence area, age, and gender. This study builds a recommender system using media & consumer research data provided by the Korea Broadcasting Advertising Promotion Corporation. Additionally, we evaluate the recommendation performance compared with several benchmark models. As a result of the experiment, we confirmed that the recommendation model reflecting the consumer's contextual information showed higher accuracy than the benchmark model. We expect to contribute to helping advertisers make effective decisions when selecting customized media based on various contextual information of consumers.

Short-Term Prediction of Vehicle Speed on Main City Roads using the k-Nearest Neighbor Algorithm (k-Nearest Neighbor 알고리즘을 이용한 도심 내 주요 도로 구간의 교통속도 단기 예측 방법)

  • Rasyidi, Mohammad Arif;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.121-131
    • /
    • 2014
  • Traffic speed is an important measure in transportation. It can be employed for various purposes, including traffic congestion detection, travel time estimation, and road design. Consequently, accurate speed prediction is essential in the development of intelligent transportation systems. In this paper, we present an analysis and speed prediction of a certain road section in Busan, South Korea. In previous works, only historical data of the target link are used for prediction. Here, we extract features from real traffic data by considering the neighboring links. After obtaining the candidate features, linear regression, model tree, and k-nearest neighbor (k-NN) are employed for both feature selection and speed prediction. The experiment results show that k-NN outperforms model tree and linear regression for the given dataset. Compared to the other predictors, k-NN significantly reduces the error measures that we use, including mean absolute percentage error (MAPE) and root mean square error (RMSE).

Performance Analysis of Dedicated Short Range Communication System on the Rician Fading Channel (라이시안 페이딩 환경에서 단거리전용통신(DSRC) 시스템의 성능 분석)

  • Kim, Man-Ho;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, we investigated performance for 5.8GHz dedicated short range communication system using OFDM which will be applied to Intelligent transportation system services. The maximum speed of a vehicle in DSRC channel is very fast as 180km/h, so a service time is very short to serve a various traffic information if hand-off is not occurred. Therefore higher bit rate is required to proved advanced and intelligent service to the drivers of various vehicle and the data transmission rate of the next generation DSRC system if being promoted over 10Mbps. The signals received in Racian channel have been simulated using the computer simulator. For performance improvement, BCH coding scheme are adopted.

  • PDF

A Study on Analysis of Requirements and Design of IR System for Semantic-based Information Retrieval (시멘틱 검색시스템 구축을 위한 요구사항 분석 및 설계에 관한 연구)

  • Kim, Yong
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.23 no.1
    • /
    • pp.91-111
    • /
    • 2012
  • With the rapid expansion of web information, conventional information retrieval techniques are becoming inadequate for users and often result in disappointment, because a couple of simple keywords can easily produce information too much. This study aims at the development of Web information retrieval techniques based on semantics to improve the quality of understanding for information. To achieve the goal, this study analyzes technologies and current status of researches on semantic information retrieval. With the results which are requirements, system architecture and indexing method, this study proposes the system architecture of semantic-based information retrieval system.

Design and Performance Analysis of Control Network on the Intelligent Large-scaled Ship using Industrial Ethernet (산업용 이더넷 기반의 선박용 제어망의 구조 설계 및 성능 분석)

  • Kwon, Ki-Hyup;Kim, Joon-Woo;Kim, Dong-Sung;Kim, Tae-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.709-711
    • /
    • 2010
  • This paper discusses a design and performance analysis of control network on large-scaled ship. Ship control network can be composed many actuator, sensors and controllers considering reliability and real-time performance. SMS(Ship Message Specification) is based on real time Ethernet is proposed for ship control networks. Considering ship environment, the proposed scheme is investigated through computer simulation.

  • PDF