• Title/Summary/Keyword: 지능형 데이터 분석

Search Result 639, Processing Time 0.032 seconds

Open Platform for Improvement of e-Health Accessibility (의료정보서비스 접근성 향상을 위한 개방형 플랫폼 구축방안)

  • Lee, Hyun-Jik;Kim, Yoon-Ho
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1341-1346
    • /
    • 2017
  • In this paper, we designed the open service platform based on integrated type of individual customized service and intelligent information technology with individual's complex attributes and requests. First, the data collection phase is proceed quickly and accurately to repeat extraction, transformation and loading. The generated data from extraction-transformation-loading process module is stored in the distributed data system. The data analysis phase is generated a variety of patterns that used the analysis algorithm in the field. The data processing phase is used distributed parallel processing to improve performance. The data providing should operate independently on device-specific management platform. It provides a type of the Open API.

Design of Classifier for Sorting of Black Plastics by Type Using Intelligent Algorithm (지능형 알고리즘을 이용한 재질별 검정색 플라스틱 분류기 설계)

  • Park, Sang Beom;Roh, Seok Beom;Oh, Sung Kwun;Park, Eun Kyu;Choi, Woo Zin
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.46-55
    • /
    • 2017
  • In this study, the design methodology of Radial Basis Function Neural Networks is developed with the aid of Laser Induced Breakdown Spectroscopy and also applied to the practical plastics sorting system. To identify black plastics such as ABS, PP, and PS, RBFNNs classifier as a kind of intelligent algorithms is designed. The dimensionality of the obtained input variables are reduced by using PCA and divided into several groups by using K-means clustering which is a kind of clustering techniques. The entire data is split into training data and test data according to the ratio of 4:1. The 5-fold cross validation method is used to evaluate the performance as well as reliability of the proposed classifier. In case of input variables and clusters equal to 5 respectively, the classification performance of the proposed classifier is obtained as 96.78%. Also, the proposed classifier showed superiority in the viewpoint of classification performance where compared to other classifiers.

Intelligent Bridge Safety Prediction Edge System (지능형 교량 안전성 예측 엣지 시스템)

  • Jinhyo Park;Taejin Lee;Yong-Geun Hong;Joosang Youn
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.357-362
    • /
    • 2023
  • Bridges are important transportation infrastructure, but they are subject to damage and cracking due to various environmental factors and constant traffic loads, which accelerate their aging. With many bridges now older than their original construction, there is a need for systems to ensure safety and diagnose deterioration. Bridges are already utilizing structural health monitoring (SHM) technology to monitor the condition of bridges in real time or periodically. Along with this technology, the development of intelligent bridge monitoring technology utilizing artificial intelligence and Internet of Things technology is underway. In this paper, we study an edge system technique for predicting bridge safety using fast Fourier transform and dimensionality reduction algorithm for maintenance of aging bridges. In particular, unlike previous studies, we investigate whether it is possible to form a dataset using sensor data collected from actual bridges and check the safety of bridges.

A Study on Efficient Mixnet Techniques for Low Power High Throughput Internet of Things (저전력 고속 사물 인터넷을 위한 효율적인 믹스넷 기술에 대한 연구)

  • Jeon, Ga-Hye;Hwang, Hye-jeong;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.246-248
    • /
    • 2021
  • Recently data has been transformed into a data economy and society that acts as a catalyst for the development of all industries and the creation of new value, and COVID-19 is accelerating digital transformation. In the upcoming intelligent Internet of Things era, the availability of decentralized systems such as blockchain and mixnet is emerging to solve the security problems of centralized systems that makes it difficult to utilize data safely and efficiently. Blockchain manages data in a transparent and decentralized manner and guarantees the reliability and integrity of the data through agreements between participants, but the transparency of the data threatens the privacy of users. On the other hand, mixed net technology for protecting privacy protects privacy in distributed networks, but due to inefficient power consumption efficiency and processing speed issues, low cost, light weight, low power consumption Internet Hard to use. In this paper, we analyze the limitations of conventional mixed-net technology and propose a mixed-net technology method for low power consumption, high speed, and the Internet of things.

  • PDF

A Date Mining Approach to Intelligent College Road Map Advice Service (데이터 마이닝을 이용한 지능형 전공지도시스템 연구)

  • Choe, Deok-Won;Jo, Gyeong-Pil;Sin, Jin-Gyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.266-273
    • /
    • 2005
  • Data mining techniques enable us to generate useful information for decision support from the data sources which are generated and accumulated in the process of routine organizational management activities. College administration system is a typical example that produces a warehouse of student records as each and every student enters a college and undertakes the curricular and extracurricular activities. So far, these data have been utilized to a very limited student service purposes, such as issuance of transcripts, graduation evaluation, GPA calculation, etc. In this paper, we utilize Holland career search test results, TOEIC score, course work list, and GPA score as the input for data mining and generation the student advisory information. Factor analysis, AHP(Analytic Hierarchy Process), artificial neural net, and CART(Classification And Regression Tree) techniques are deployed in the data mining process. Since these data mining techniques are very powerful in processing and discovering useful knowledge and information from large scale student databases, we can expect a highly sophisticated student advisory knowledge and services which may not be obtained with the human student advice experts.

  • PDF

Intelligent Evaluation Algorithm for Identifying Hazards in Public Restrooms Using Virtual Reality and Sensor Data (가상현실과 센서데이터를 활용하는 공중화장실 위험요소 지능형 평가 알고리즘)

  • Shin-Sook Yoon;Jeong-Hwa Song
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.473-482
    • /
    • 2024
  • This study utilized virtual reality to construct a simulated public restroom environment to identify potential hazards. The objective was to discern actual risks in real-world public restrooms through this virtual setup. During the virtual restroom experience, data from the built-in 3-axis accelerometer and gyroscope sensors of testor's smart phones were collected. Analysis of this data helped in identifying spatio temporal factors impacting the users. The determination of these factors as risk elements was based on an evaluation algorithm grounded in data analysis.

Design and Implementation of Intelligent Tutoring Agent Platform Based on Collective Intelligence (집단지성기반 지능형 튜터링 에이전트 플랫폼 설계 및 구현)

  • Hong, Seong-Yong;Yi, Mun-Yong;Yoon, Wan-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.122-124
    • /
    • 2012
  • 최근 지식정보화 시대의 집단지성기반 교육 패러다임 변화는 큰 이슈로 떠오르고 있다. 특히 융합적 학문을 근원으로 창의성 계발과 아이디어를 중요시하고 있으며, 창조적 교육방식을 지향하고 있다. 그러나 다양한 영역에 지식전문가들과 학습자들 간에 지식을 공유하기 위한 플랫폼 공간이 제대로 제공되고 있지 못하며, 단순한 컨텐츠 제공을 목적으로 이러닝 서비스가 일부 제공되고 있는 것이 현실이다. 따라서 본 논문에서는 집단지성을 기반으로 지능형 튜터링 에이전트 시스템 설계를 제안하고, 새로운 에이전트(Agent) 개념을 통해 지식인들과 학습자들 간에 지식을 공유할 수 있을 뿐만 아니라 새로운 지식을 창출하고, 관리 및 유통할 수 있는 구조를 연구하였다. 또한 사용자들로부터 발생하는 데이터와 정보들을 자동 분석하여 지능적으로 학습상황에 대처할 수 있도록 설계하였으며, 튜터(Tutor)와 튜티(Tutee)간에 협력적인 학습 생태계가 형성될 수 있도록 하였다. 따라서 본 연구의 결과를 기반으로 미래 스마트 학습 플랫폼 발전에 많은 도움이 되길 기대한다.

A Study on Predictive Preservation of Equipment Management System with Integrated Intelligent IoT (지능형 IoT를 융합한 장비 운용 시스템의 예지 보전을 위한 연구)

  • Lee, Sang-Deok;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.83-89
    • /
    • 2022
  • Internet of Things technology is rapidly developing due to the recent development of information and communication technology. IoT technology utilizes various sensors to generate unique data from each sensor, enabling diagnosis of system status. However, the equipment management system currently in effect is a post-preservation concept in which administrators must deal with the problem after the problem occurs, which could mean system reliability and availability problems due to system errors, and could result in economic losses due to negative productivity disruptions. Therefore, this study confirmed that edge controller control decision algorithms for more efficient operation of rectifiers in the factory by applying intelligent IoT (AIoT) technology and domain knowledge-based modeling for each sensor data collected based on this, outputting appropriate status messages for each scenario.

Artificial intelligence application UX/UI study for language learning of children with articulation disorder (조음장애 아동의 언어학습을 위한 인공지능 애플리케이션 UX/UI 연구)

  • Yang, Eun-mi;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.174-176
    • /
    • 2022
  • In this paper, we present a mobile application for 'personalized customized learning' for children with articulation disorders using an artificial intelligence (AI) algorithm. A dataset (Data Set) to analyze, judge, and predict the learner's articulation situation and degree. In particular, we designed a prototype model by looking at how AI can be improved and advanced compared to existing applications from the UX/UI (GUI) aspect. So far, the focus has been on visual experience, but now it is an important time to process data and provide a UX/UI (GUI) experience to users. The UX/UI (GUI) of the proposed mobile application was to be provided according to the learner's articulation level and situation by using CRNN (Convolution Recurrent Neural Network) of DeepLearning and Auto Encoder GPT-3 (Generative Pretrained Transformer). The use of artificial intelligence algorithms will provide a learning environment with a high degree of perfection to children with articulation disorders, thereby enhancing the learning effect. I hope that you do not have any fear or discomfort in conversation by improving the perfection of articulation with 'personalized and customized learning'.

  • PDF

A Study on Intelligent Self-Recovery Technologies for Cyber Assets to Actively Respond to Cyberattacks (사이버 공격에 능동대응하기 위한 사이버 자산의 지능형 자가복구기술 연구)

  • Se-ho Choi;Hang-sup Lim;Jung-young Choi;Oh-jin Kwon;Dong-kyoo Shin
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.137-144
    • /
    • 2023
  • Cyberattack technology is evolving to an unpredictable degree, and it is a situation that can happen 'at any time' rather than 'someday'. Infrastructure that is becoming hyper-connected and global due to cloud computing and the Internet of Things is an environment where cyberattacks can be more damaging than ever, and cyberattacks are still ongoing. Even if damage occurs due to external influences such as cyberattacks or natural disasters, intelligent self-recovery must evolve from a cyber resilience perspective to minimize downtime of cyber assets (OS, WEB, WAS, DB). In this paper, we propose an intelligent self-recovery technology to ensure sustainable cyber resilience when cyber assets fail to function properly due to a cyberattack. The original and updated history of cyber assets is managed in real-time using timeslot design and snapshot backup technology. It is necessary to secure technology that can automatically detect damage situations in conjunction with a commercialized file integrity monitoring program and minimize downtime of cyber assets by analyzing the correlation of backup data to damaged files on an intelligent basis to self-recover to an optimal state. In the future, we plan to research a pilot system that applies the unique functions of self-recovery technology and an operating model that can learn and analyze self-recovery strategies appropriate for cyber assets in damaged states.