• 제목/요약/키워드: 지능정보 기반

검색결과 4,526건 처리시간 0.033초

KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용 (KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain)

  • 김동규;이동욱;박장원;오성우;권성준;이인용;최동원
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.191-206
    • /
    • 2022
  • 대량의 말뭉치를 비지도 방식으로 학습하여 자연어 지식을 획득할 수 있는 사전학습 언어모델(Pre-trained Language Model)은 최근 자연어 처리 모델 개발에 있어 매우 일반적인 요소이다. 하지만, 여타 기계학습 방식의 성격과 동일하게 사전학습 언어모델 또한 학습 단계에 사용된 자연어 말뭉치의 특성으로부터 영향을 받으며, 이후 사전학습 언어모델이 실제 활용되는 응용단계 태스크(Downstream task)가 적용되는 도메인에 따라 최종 모델 성능에서 큰 차이를 보인다. 이와 같은 이유로, 법률, 의료 등 다양한 분야에서 사전학습 언어모델을 최적화된 방식으로 활용하기 위해 각 도메인에 특화된 사전학습 언어모델을 학습시킬 수 있는 방법론에 관한 연구가 매우 중요한 방향으로 대두되고 있다. 본 연구에서는 금융(Finance) 도메인에서 다양한 자연어 처리 기반 서비스 개발에 활용될 수 있는 금융 특화 사전학습 언어모델의 학습 과정 및 그 응용 방식에 대해 논한다. 금융 도메인 지식을 보유한 언어모델의 사전학습을 위해 경제 뉴스, 금융 상품 설명서 등으로 구성된 금융 특화 말뭉치가 사용되었으며, 학습된 언어 모델의 금융 지식을 정량적으로 평가하기 위해 토픽 분류, 감성 분류, 질의 응답의 세 종류 자연어 처리 데이터셋에서의 모델 성능을 측정하였다. 금융 도메인 말뭉치를 기반으로 사전 학습된 KB-BERT는 KoELECTRA, KLUE-RoBERTa 등 State-of-the-art 한국어 사전학습 언어 모델과 비교하여 일반적인 언어 지식을 요구하는 범용 벤치마크 데이터셋에서 견줄 만한 성능을 보였으며, 문제 해결에 있어 금융 관련 지식을 요구하는 금융 특화 데이터셋에서는 비교대상 모델을 뛰어넘는 성능을 보였다.

조직의 오픈소스 소프트웨어 전환에 영향을 미치는 요인과 관리자의 SW 경쟁력 확보의지의 조절효과 (Determinants Affecting Organizational Open Source Software Switch and the Moderating Effects of Managers' Willingness to Secure SW Competitiveness)

  • 김상현;박현선
    • 경영정보학연구
    • /
    • 제21권4호
    • /
    • pp.99-123
    • /
    • 2019
  • 지식 정보화 시대에 대표적인 고부가가치 산업으로서 소프트웨어 산업에 대한 중요성이 증대되고 있으며, 그 중에서도 오픈소스 소프트웨어는 소스코드 공개, 자유로운 수정과 배포, 공급업체에 대한 의존성 탈피, 비용 절감과 같은 이점을 바탕으로 빠르게 활동 영역을 확장해가고 있다. 특히, 오픈소스 소프트웨어는 클라우드, 사물인터넷, 인공지능, 빅데이터 등과 같은 새로운 정보기술과 접목하여 활용도가 높을 것으로 예상되고 소프트웨어의 신기술 발전을 주도할 수 있다는 점에서 다양한 긍정적인 효과를 얻을 수 있을 것으로 전망되고 있다. 글로벌 IT 기업들은 이러한 오픈소스 소프트웨어를 비즈니스 혁신을 위해 적극적으로 활용하고 있으며 국내에서도 오픈소스 소프트웨어를 활성화하기 위한 관련정책과 기업들의 노력이 이어지고 있다. 오픈소스 소프트웨어가 주목 받음에 따라 이와 관련된 연구도 활발하게 진행되고 있으나 조직들이 어떠한 이유로 기존의 비공개 소프트웨어에서 오픈소스 소프트웨어로 전환하게 되는가에 하는 연구는 미비한 실정이다. 이에 본 연구는 인간의 이주행동을 설명하는데 유용한 이론적 틀로 알려진 Push-Pull-Mooring 프레임워크를 기반으로 오픈소스 소프트웨어로의 전환에 영향을 미치는 요인들을 제안하고 그 관계를 실증분석을 통해 확인하고자 하였다. 이를 위해 관련 기업에서 수집된 총 268부를 바탕으로 본 연구에서 제안한 연구모형의 가설을 검증하였다. 연구결과, push 요소인 지속적 유지비용, 벤더 의존성, 기능적 무차별성, SW 자원의 비효율성, 그리고 pull 요소인 네트워크 기반지원, 시험 가능성, 전략적 유연성이 오픈소스 소프트웨어 전환에 유의미한 영향을 미치는 것으로 나타났지만, 지식수준향상은 유의 하지 않은 것으로 판명 되었다. 또한, Mooring 효과로 관리자의 SW 경쟁력 확보의지는 push와 pull요소 중 지식수준향상과 OSS 전환 관계를 제외한 모든 관계를 강화시키는 것으로 나타났다. 본 연구의 결과는 오픈소스 소프트웨어에 대한 연구를 확장할 수 있는 기반을 제공하고 관련 기업들에게 OSS로의 전환에 대한 유용한 정보를 제공할 수 있을 것이다.

FCA 기반 계층적 구조를 이용한 문서 통합 기법 (Methods for Integration of Documents using Hierarchical Structure based on the Formal Concept Analysis)

  • 김태환;전호철;최종민
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.63-77
    • /
    • 2011
  • 월드와이드웹(World Wide Web)은 인터넷에 연결된 컴퓨터를 통해 사람들이 정보를 공유할 수 있는 매우 큰 분산된 정보 공간이다. 웹은 1991년에 시작되어 개인 홈페이지, 온라인 도서관, 가상 박물관 등 다양한 정보 자원들을 웹으로 표현하면서 성장하였다. 이러한 웹은 현재 5천억 페이지 이상 존재할 것이라고 추정한다. 대용량 정보에서 정보를 효과적이며 효율적으로 검색하는 기술을 적용할 수 있다. 현재 존재하는 몇몇 검색 도구들은 초 단위로 gigabyte 크기의 웹을 검사하여 사용자에게 검색 정보를 제공한다. 그러나 검색의 효율성은 검색 시간과는 다른 문제이다. 현재 검색 도구들은 사용자의 질의에 적합한 정보가 적음에도 불구하고 많은 문서들을 사용자에게 검색해준다. 그러므로 대부분의 적합한 문서들은 검색 상위에 존재하지 않는다. 또한 현재 검색 도구들은 사용자가 찾은 문서와 관련된 문서를 찾을 수 없다. 현재 많은 검색 시스템들의 가장 중요한 문제는 검색의 질을 증가 시키는 것이다. 그것은 검색된 결과로 관련 있는 문서를 증가시키고, 관련 없는 문서를 감소시켜 사용자에게 제공하는 것이다. 이러한 문제를 해결하기 위해 CiteSeer는 월드와이드웹에 존재하는 논문에 대해 한정하여 ACI(Autonomous Citation Indexing)기법을 제안하였다. "Citaion Index"는 연구자가 자신의 논문에 다른 논문을 인용한 정보를 기술하는데 이렇게 기술된 논문과 자신의 논문을 연결하여 색인한다. "Citation Index"는 논문 검색이나 논문 분석 등에 매우 유용하다. 그러나 "Citation Index"는 논문의 저자가 다른 논문을 인용한 논문에 대해서만 자신의 논문을 연결하여 색인했기 때문에 논문의 저자가 다른 논문을 인용하지 않은 논문에 대해서는 관련 있는 논문이라 할지 라도 저자의 논문과 연결하여 색인할 수 없다. 또한 인용되지 않은 다른 논문과 연결하여 색인할 수 없기 때문에 확장성이 용이하지 못하다. 이러한 문제를 해결하기 위해 본 논문에서는 검색된 문서에서 단락별 명사와 동사 및 목적어를 추출하여 해당 동사가 명사 및 목적어를 취할 수 있는 가능한 값을 고려하여 하나의 문서를 formal context 형태로 변환한다. 이 표를 이용하여 문서의 계층적 그래프를 구성하고, 문서의 그래프를 이용하여 문서 간 그래프를 통합한다. 이렇게 만들어진 문서의 그래프들은 그래프의 구조를 보고 각각의 문서의 영역을 구하고 그 영역에 포함관계를 계산하여 문서와 문서간의 관계를 표시할 수 있다. 또한 검색된 문서를 트리 형식으로 보여주어 사용자가 원하는 정보를 보다 쉽게 검색할 수 있는 문서의 구조적 통합 방법에 대해 제안한다. 제안한 방법은 루씬 검색엔진이 가지고 있는 순위 계산 공식을 이용하여 문서가 가지는 중요한 단어를 문서의 참조 관계에 적용하여 비교하였다. 제안한 방법이 루씬 검색엔진보다15% 정도 높은 성능을 나타내었다.

유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링 (Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms)

  • 노희룡;최슬비;안현철
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.19-38
    • /
    • 2017
  • 본 연구는 사용자 평점 이외에 사용자 간 직접 간접적 신뢰 및 불신 관계 네트워크의 분석 결과를 추가로 반영한 새로운 하이브리드 협업필터링(Collaborative filtering, CF) 추천방법을 제안한다. 구체적으로 사용자 간의 유사도를 계산할 때 사용자 평가점수의 유사성만을 고려하는 기존의 CF와 다르게, 사용자 신뢰 및 불신 관계 데이터의 사회연결망분석 결과를 추가적으로 고려하여 보다 정교하게 사용자 간의 유사도를 산출하였다. 이 때, 사용자 간의 유사도를 재조정하는 접근법으로 특정 이웃 사용자가 신뢰 및 불신 관계 네트워크에서 높은 신뢰(또는 불신)를 받을 때, 추천 대상이 되는 사용자와 해당 이웃 간의 유사도를 확대(강화) 또는 축소(약화)하는 방안을 제안하고, 더 나아가 최적의 유사도 확대 또는 축소의 정도를 결정하기 위해 유전자 알고리즘(genetic algorithm, GA)을 적용하였다. 본 연구에서는 제안 알고리즘의 성능을 검증하기 위해, 특정 상품에 대한 사용자의 평가점수와 신뢰 및 불신 관계를 나타낸 실제 데이터에 추천 알고리즘을 적용하였으며 그 결과, 기존의 CF와 비교했을 때 통계적으로 유의한 수준의 예측 정확도 개선이 이루어짐을 확인할 수 있었다. 또한 신뢰 관계 정보보다는 불신 관계 정보를 반영했을 때 예측 정확도가 더 향상되는 것으로 나타났는데, 이는 사회적인 관계를 추적하고 관리하는 측면에서 사용자 간의 불신 관계에 대해 좀 더 주목해야 할 필요가 있음을 시사한다.

다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링 (User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis)

  • 김지은;김남규;조윤호
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.93-107
    • /
    • 2014
  • 대부분의 인터넷 쇼핑몰은 자사 고객의 관심 분야를 파악하고 이를 상품 추천에 효과적으로 활용하기 위해 많은 노력을 기울이고 있다. 하지만 고객이 회원 가입 시 직접 입력한 개인 정보는 신뢰하기가 어렵고, 고객의 구매 패턴을 통해 파악한 관심 분야 정보는 자사 사이트 내에 진입한 이후에만 보인 한정된 패턴이라는 측면에서 해당 고객의 다양한 관심분야를 제대로 나타낸다고 보기 어렵다. 이러한 한계를 극복하기 위해 본 연구에서는 고객의 평소 인터넷 사용 기록을 통해 최근 방문 사이트들의 주제를 분석함으로써, 고객의 실제 관심 분야를 파악할 수 있는 방안을 제시하였다. 또한 토픽 분석을 통해 각 사이트의 주제를 도출하고 도출된 주제를 다시 동시 방문자 관점에서 군집화 함으로써, 고객 관점에서 의미가 있는 상위 수준의 새로운 테마를 발굴하기 위한 방법론을 제안하였다. 연구의 특징은 유사주제 중심의 군집화라는 기존 연구와는 달리 사용자 관점의 관심주제 중심 군집화라 할 수 있다. 향후 사용자 중심의 카테고리 설계를 비롯한 새로운 관점의 고객군 정의 등 보다 높은 차원의 마케팅 전략 수립에 활용이 가능할 것으로 기대된다. 사용자 관점의 이슈 군집화 과정은 크롤링, 토픽 분석, 액세스 패턴 분석, 네트워크 병합, 네트워크 변환 및 군집화와 같은 여섯 가지 주요단계로 구성되어있다. 이를 위해 텍스트 마이닝과 소셜 네트워크 분석 기법을 활용한 비정형 텍스트를 기반으로한 빅데이터의 활용 방법을 모색하였다. 제안 방법론의 실무 적용 가능성을 평가하기 위해, 국내 최대 포털 뉴스 사이트의 방문자 2,177명의 1년간 방문 기록과 뉴스기사 대한 분석을 수행하고 그 결과를 요약하여 제시하였다.

오피니언 분류의 감성사전 활용효과에 대한 연구 (A Study on the Effect of Using Sentiment Lexicon in Opinion Classification)

  • 김승우;김남규
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.133-148
    • /
    • 2014
  • 최근 다양한 정보채널들의 등장으로 인해 빅데이터에 대한 관심이 높아지고 있다. 이와 같은 현상의 가장 큰 원인은, 스마트기기의 사용이 활성화 됨에 따라 사용자가 생성하는 텍스트, 사진, 동영상과 같은 비정형 데이터의 양이 크게 증가하고 있는 것에서 찾을 수 있다. 특히 비정형 데이터 중에서도 텍스트 데이터의 경우, 사용자들의 의견 및 다양한 정보를 명확하게 표현하고 있다는 특징이 있다. 따라서 이러한 텍스트에 대한 분석을 통해 새로운 가치를 창출하고자 하는 시도가 활발히 이루어지고 있다. 텍스트 분석을 위해 필요한 기술은 대표적으로 텍스트 마이닝과 오피니언 마이닝이 있다. 텍스트 마이닝과 오피니언 마이닝은 모두 텍스트 데이터를 입력 데이터로 사용할 뿐 아니라 파싱, 필터링 등 자연어 처리기술을 사용한다는 측면에서 많은 공통점을 갖고 있다. 특히 문서의 분류 및 예측에 있어서 목적 변수가 긍정 또는 부정의 감성을 나타내는 경우에는, 전통적 텍스트 마이닝, 또는 감성사전 기반의 오피니언 마이닝의 두 가지 방법론에 의해 오피니언 분류를 수행할 수 있다. 따라서 텍스트 마이닝과 오피니언 마이닝의 특징을 구분하는 가장 명확한 기준은 입력 데이터의 형태, 분석의 목적, 분석의 결과물이 아닌 감성사전의 사용 여부라고 할 수 있다. 따라서 본 연구에서는 오피니언 분류라는 동일한 목적에 대해 텍스트 마이닝과 오피니언 마이닝을 각각 사용하여 예측 모델을 수립하는 과정을 비교하고, 결과로 도출된 모델의 예측 정확도를 비교하였다. 오피니언 분류 실험을 위해 영화 리뷰 2,000건에 대한 실험을 수행하였으며, 실험 결과 오피니언 마이닝을 통해 수립된 모델이 텍스트 마이닝 모델에 비해 전체 구간의 예측 정확도 평균이 높게 나타나고, 예측의 확실성이 강한 문서일수록 예측 정확성이 높게 나타나는 일관적인 성향을 나타내는 등 더욱 바람직한 특성을 보였다.

UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험 (Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition)

  • 김태경
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.99-118
    • /
    • 2015
  • 정보 시스템 개발에 있어 객체지향 프로그래밍 언어가 널리 사용된다. 이와 함께 객체지향 설계를 뒷받침하는 개념적 모델링 언어에 관한 관심도 높다. 이를 배경으로 통합 모델링 언어 혹은 UML로 알려진 개념적 모델링 언어는 여러 객체 지향 프로그래밍 언어와 함께 사용되면서 사후적 표준으로 자리 잡았다. UML은 클래스를 설계의 중심에 둔다. 또한 클래스들 간의 관계를 통해 체계적인 이해를 가능하게 한다. 특히 부분에 해당하는 클래스들과 전체에 해당하는 클래스의 관계인 부분-전체 관계를 설계할 수 있는 문법 또한 UML에 포함된다. 현실 세계에 부분-전체 관계로 파악될 수 있는 여러대상들이 존재하고 비즈니스 활동에 존재하는 각종 역할들의 구조에서도 부분-전체 관계로 표현될 수 있는 대상들이 보편적으로 보인다. 따라서 UML로 클래스들 간의 부분-전체 관계를 드러내는 일은 자연스럽다. 문제는 부분-전체 관계를 파악하는 활동은 UML 2.0의 표준에 포함되었으나 실제 설계 과정에서 적극 활용하기 위한 실천적 이론화가 부족하다는 점이다. 부분-전체 관계를 집합연관과 복합연관으로 세분화한 UML 문법은 표현 양식에서 부족함은 없을지라도 어떤 대상을 부분-전체로 파악하고, 이를 어떻게 집합연관이나 복합연관으로 분류해야 할 것인지에 대한 판단이 쉽게 결여된다. 지금까지 UML의 부분-전체 관계 규명은 언어적 표현법을 활용하는 것에 치우쳤다. 이와 같은 문제에 대한 대안을 제시하기 위해 본 연구는 메타모델 형식화 이론을 기반으로 UML 사용자가 부분-전체 관계를 판단하고 이를 집합연관과 복합연관으로 분류할 수 있는 실천적 대안을 제시한다. 이를 활용한 실험의 결과 메타모델 형식화가 UML 사용자들에게 통용되어 온 언어적 구분법보다 더 나은 결과를 낳는다는 점이 밝혀졌다. 본 연구는 부분-전체의 판별과 구분에 도움을 주는 실용적인 방법을 제안하고 검증하였다는 점에서 의의가 있다.

전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구 (The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition)

  • 정현철;김남진;최이권
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.19-28
    • /
    • 2012
  • 전시 공간에서 관객들의 반응에 따른 다중 인터랙션 서비스를 제공하기 위해서는 관람객의 정확한 위치 및 이동 경로를 얻기 위한 위치 추적 기술이 필요하다. 실외 환경에서 위치 추적을 위한 기술로 GPS가 현재 널리 사용되고 있다. GPS는 빠른 속도로 이동하는 이동체의 위치를 실시간으로 파악할 수 있으므로 위치 추적 서비스(Location Tracking Service)를 요구하는 분야에서 중요한 기술로 활용된다. 하지만 위성을 이용한 위치 추적 기법을 사용하기 때문에 위성 신호를 잡을 수 없는 실내에서는 사용할 수 없다는 단점이 있다(Per Enge et al., 1996). 위와 같은 이유로 Wi-Fi 위치 측위 기술을 비롯하여 ZigBee, UWB, RFID 등의 초단거리 통신 기술 등 다양한 형태의 실내 위치 측위 연구가 진행되고 있다(Schiler and Voisad, 2004). 하지만 이러한 기술들은 전시 공간에서 얻고자 하는 위치정보의 밀도가 높아질수록 구현의 난이도가 높아지고 구축 및 관리 비용도 커지며 구축 가능한 환경이 제약된다는 단점이 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 실내 환경에서 스마트폰을 이용한 Wi-Fi 위치 측위 데이터를 기반으로 하여 3D카메라의 Depth Map 정보와의 매핑을 통해 사용자들을 식별하고 위치를 추적하는 시스템을 제안한다.

소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크 (Context Sharing Framework Based on Time Dependent Metadata for Social News Service)

  • 가명현;오경진;홍명덕;조근식
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.39-53
    • /
    • 2013
  • 인터넷의 발달과 SNS의 등장으로 정보흐름의 방식이 크게 바뀌었다. 이러한 변화에 따라 소셜 미디어가 급부상하고 있으며 소셜 미디어와 비디오 콘텐츠가 융합된 소셜 TV, 소셜 뉴스의 중요성이 강조되고 있다. 이러한 환경 속에서 사용자들은 단순히 콘텐츠를 탐색만 하는 것이 아니라 같은 콘텐츠를 이용하고 있는 친구들이나 지인들과 콘텐츠에 대한 정보나 경험들을 공유하고 더 나아가 새로운 콘텐츠를 만들어내기도 한다. 하지만 기존의 소셜 뉴스에서는 이러한 사용자들의 특성을 반영해 주지 못하고 있다. 특히 이용자들의 참여성만을 고려하고 있어서 서비스간의 차별화가 어렵고 뉴스 콘텐츠에 대한 정보나 경험 공유 시 컨텍스트 공유가 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 뉴스를 내용별로 분할하고 분할된 뉴스에서 추출된 시간 종속적인 메타데이터를 제공하는 프레임워크를 제안한다. 제안하는 프레임워크에서는 스토리 분할 방법을 이용하여 뉴스 대본을 내용별로 분할한다. 또한 뉴스 전체내용을 대표하는 태그, 분할된 뉴스를 나타내는 서브 태그, 분할된 뉴스가 비디오에서 시작하는 위치 즉, 시간 종속적인 메타데이터를 제공한다. 소셜 뉴스 이용자들에게 시간 종속적인 메타데이터를 제공한다면 이용자들은 전체의 뉴스 내용 중에 자신이 원하는 부분만을 탐색 할 수 있으며 이 부분에 대한 견해를 남길 수 있다. 그리고 뉴스의 전달이나 의견 공유 시 메타데이터를 함께 전달함으로써 전달하고자 하는 내용에 바로 접근이 가능하며 프레임워크의 성능은 추출된 서브 태그가 뉴스의 실제 내용을 얼마나 잘 나타내 주느냐에 따라 결정된다. 그리고 서브 태그는 스토리 분할의 정확성과 서브 태그를 추출하는 방법에 따라 다르게 추출된다. 이 점을 고려하여 의미적 유사도 기반의 스토리 분할 방법을 프레임워크에 적용하였고 벤치마크 알고리즘과 성능 비교 실험을 수행하였으며 분할된 뉴스에서 추출된 서브 태그들과 실제 뉴스의 내용을 비교하여 서브 태그들의 정확도를 분석하였다. 결과적으로 의미적 유사도를 고려한 스토리 분할 방법이 더 우수한 성능을 보였으며 추출된 서브 태그들도 컨텍스트와 관련된 단어들이 추출 되었다.

Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구 (A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction)

  • 이재성;전승표;서진이
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.73-95
    • /
    • 2021
  • 본 연구는 Node2vec 그래프 임베딩 방법과 Light GBM 링크 예측을 활용해 우리나라 식음료 산업의 미개척 수출 후보국가를 탐색한다. Node2vec은 네트워크의 공통 이웃 개수 등을 기반으로 하는 기존의 링크 예측 방법에 비해 상대적으로 취약하다고 알려져 있던 네트워크의 구조적 등위성 표현의 한계를 개선한 방법이다. 따라서 해당 방법은 네트워크의 커뮤니티 탐지와 구조적 등위성 모두에서 우수한 성능을 나타내는 것으로 알려져 있다. 이에 본 연구는 이상의 방법을 우리나라 식음료 산업의 국제 무역거래 정보에 적용했다. 이를 통해 해당 산업의 글로벌 가치사슬 관계에서 우리나라의 광범위한 마진 다각화 효과를 창출하는데 기여하고자 한다. 본 연구의 결과를 통해 도출된 최적의 예측 모델은 0.95의 정밀도와 0.79의 재현율을 기록하며 0.86의 F1 score를 기록해 우수한 성능을 나타냈다. 이상의 모델을 통해 도출한 우리나라의 잠재적 수출 후보국가들의 결과는 추가 조사를 통해 대부분 적절하게 나타난 것을 알 수 있었다. 이상의 내용을 종합하여 본 연구는 Node2vec과 Light GBM을 응용한 링크 예측 방법의 실무적 활용성에 대해 시사할 수 있었다. 그리고 모델을 학습하며 링크 예측을 보다 잘 수행할 수 있는 가중치 업데이트 전략에 대해서도 유용한 시사점을 도출할 수 있었다. 한편, 본 연구는 그래프 임베딩 기반의 링크 예측 관련 연구에서 아직까지 많이 수행된 적 없는 무역거래에 이를 적용했기에 정책적 활용성도 갖고 있다. 본 연구의 결과는 최근 미중 무역갈등이나 일본 수출 규제 등과 같은 글로벌 가치사슬의 변화에 대한 빠른 대응을 지원하며 정책적 의사결정을 위한 도구로써 충분한 유용성이 있다고 생각한다.