• Title/Summary/Keyword: 지구환경 시스템

Search Result 1,064, Processing Time 0.028 seconds

Comparison of performance of automatic detection model of GPR signal considering the heterogeneous ground (지반의 불균질성을 고려한 GPR 신호의 자동탐지모델 성능 비교)

  • Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.341-353
    • /
    • 2022
  • Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.

Using GIS Modeling to Assess the Distribution and Spatial Probability of Soil Contamination of Geologic Origin in Korea (GIS 모델링을 이용한 국내 지질 기원 토양오염의 분포 현황과 공간적 개연성 연구)

  • Jae-Jin Choi;Kyeong-Hun Cha;Gyo-Cheol Jeong;Jong-Tae Kim;Seong-Cheol Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.39-49
    • /
    • 2023
  • Soil contaminants measured and managed in Korea include those of geologic origin such as arsenic, cadmium, copper, lead, zinc, nickel, mercury, and fluoride. This study identifies the distribution of these contaminants using GIS modeling to analyze the spatial probability of soil contamination originating from geology. The modeling found that cadmium, copper, lead, nickel, and mercury often exceed the regulated standard by <1%. Concentrations of arsenic and zinc greatly exceeded the standard in the vicinity of mines and industrial complexes: mining and industry seemed to have substantial effects on the concentrations of these metals. Although fluoride was sampled at the lowest number of points, its frequency of exceeding the standard was the highest. No obvious source of artificial contamination has been identified, and fluoride's distribution characteristics showed continuity over a wide area, suggesting a strong correlation between geological characteristics and fluoride concentration. The highest frequencies of fluoride exceeding the standard were in Jurassic granite (40.00%) and Precambrian banded gneiss (34.12%). As these rocks contributed to the formation of soil through their weathering, high fluoride concentrations can be expected in soil in areas where these rocks are distributed.

Investigation on Weathering Degree and Shear Wave Velocity of Decomposed Granite Layer in Hongsung (홍성 지역 화강 풍화 지층의 풍화도 및 전단파 속도에 관한 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.431-443
    • /
    • 2006
  • As part of a fundamental characterization for subsurface layers in Korea, the weathering degree and shear wave velocity ($V_S$) were evaluated from the X-ray fluorescence analyses and the site investigations containing boring and in-situ seismic tests, respectively, for decomposed granite layer in Hongsung. The subsurface layers at Hongsung were composed of 10 to 40 m thickness of weathered layer in most sites. According to the results of weathering degree analyses in Hongsung, it was examined that three chemical weathering indexes such as MWPI, VR and WIP generally increased with decreasing depth. From the in-situ seismic tests, the $V_S$ was determined as the range between 200 and 500 m/s in weathered layer. Based on the $V_S$ and N value at borehole seismic testing sites, N-$V_S$ correlations were established for weathered layer. Furthermore, the relationships of three representative weathering indexes with the $V_S$ and N value indicated that the MWPI, WIP and 100/VR increased linearly as increasing $V_S$ and exponentially as increasing N value.

Flow Structure and Turbulence Characteristics in Meandering Channel (사행수로의 흐름구조 및 난류특성)

  • Seo, Il Won;Lee, Kyu Whan;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.469-479
    • /
    • 2006
  • In order to investigate characteristics of the primary flow and the secondary currents in meandering channels, the laboratory experiments were conducted in S-curved channels with angle of bend, $150^{\circ}$, and sinuosity of 1.52. The experimental conditions was decided varying average depth and velocity. Under these experimental conditions, spatial variations of the secondary currents in multiple bends were observed. The experimental results revealed that the distribution of primary flow in straight section is symmetric without respect to the experimental condition and the maximum velocity line of the primary flow occurs along the shortest path in experimental channel, supporting the result of previous works. The secondary currents in second bend became more developed than those in first bend. Particularly, the outer bank cell developed distinctively and the secondary current intensity was low at the straight section and high at the bends, periodically. Also, the secondary current intensity at the bends was as twice to three times as that at the straight section, and has its maximum value at the second bend. The turbulent flow characteristics of meandering channel was investigated with turbulent intensity of the primary flow and Reynolds shear stress. It was observed that the turbulent intensity is increasing when the velocity deviation of the primary flow is large whereas Reynolds shear stress increases when both the velocity deviation of the primary flow and the secondary current are large.

Closing Analysis of Symmetric Steel Cable-stayed Bridges and Estimation of Construction Error (대칭형 강 사장교의 폐합해석과 시공오차의 예측)

  • Lee, Min Kwon;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.55-65
    • /
    • 2006
  • This paper presents the closing analysis of a symmetric steel cable-stayed bridge erected by a free cantilever method. Two independent structural systems are formed before the closing procedure of a bridge is performed, and thus the compatibility conditions for vertical displacement and rotational angle are not satisfied at the closing section without the application of proper sectional forces. Since, however, it is usually impossible to apply sectional forces at the closing section, the compatibility conditions should be satisfied by proper external forces that can be actually applicable to a bridge. Unstrained lengths of selected cables and the pull-up force of a derrick crane are adjusted to satisfy nonlinear compatibility conditions, which are solved iteratively by the Newton-Raphson method. Cable members are modeled by the elastic catenary cable elements, and towers and main girders are discretized by linear 3-D frame elements. The sensitivities of displacement with respect to the unstrained lengths of selected cables and the pull-up force of the derrick crane are evaluated by the direct differentiation of the equilibrium equation. A Monte-Carlo simulation approach is proposed to estimate expected construction errors for a given confidence level. The proposed method is applied to the second Jindo Grand Bridge to demonstrate its validity and effectiveness.

Comparative Evaluation of Behavior Analysis of Rectangular Jet and Two-dimensional Jet (사각형제트와 2차원제트의 거동해석의 비교 평가)

  • Kwon, Seok Jae;Cho, Hong Yeon;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.641-649
    • /
    • 2006
  • The behavior of a three-dimensional pure rectangular water jet with aspect ratio of 10 was experimentally investigated based on the results of the mean velocity field obtained by PIV. The saddle back distribution was observed in the lateral distribution along the major axis. The theoretical centerline velocity equation derived from the point source concept using the spreading rate for the axisymmetric jet was in good agreement with the measured centerline velocity and gave the division of the potential core region, two-dimensional region, and axisymmetric region. The range of the two-dimensional region divided by the criterion of the theoretical centerline velocity decay for the aspect ratio of 10 was observed to be smaller than that of the transition region. The applicability of the two-dimensional model to the behavior of the rectangular jet with low aspect ratio or the wastewater discharged from a multiport diffuser in the deep water of real ocean may result in significant error in the transition and axisymmetric regions after the two-dimensional region. In the two-dimensional region, the Gaussian constant tended to be conserved, and the spreading rate slightly decreased at the end of the two-dimensional region. The normalized turbulent intensity along the centerline of the jet initially abruptly increased and showed relatively higher intensity for higher Reynolds number.

Spatial Distribution of Macrozoobenthos During Spring Season in the Estuarine Sandy Tidal Flat of Masan Bay, Korea (하구역 모래갯벌인 봉암갯벌(경남 마산)에 서식하는 대형저서동물의 봄철 공간분포)

  • Seo, Jin-Young;An, Soon-Mo;Choi, Jin-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • In this study, we investigated the spatial distribution of macrozoobenthos in the estuarine sandy flat, the Bongam tidal flat located in Masan Bay during March, 2004. A total 13 species were identified at 12 stations within the tidal flat. The mean density was $20,267\;ind./m^2$, and mean biomass was $228.1g/m^2$. Dominant species in the Bongam tidal flat were all polychaetes: Prionospio japonicus ($11,716\;ind./m^2$, 57.8%) and Polydora ligni ($3,929\;ind./m^2$, 19.4%) of spionoid polychaete, and Neanthes succinea ($3,425\;ind./m^2$, 16.9%) of nereid polychaete. The most dominant species, P. japonicus distributed evenly all stations in the tidal flat. But N. succinea showed high density at the upper area of the tidal flat. Species diversity index (H') was in the range of 0.6 to 1.2 which is relatively low due to the prominent of P. japonicus and few species richness at each station. The study area was divided into two station groups (group A and B) based on the cluster analysis and MDS ordination, and the spatial distribution of macrozoobenthos on the Bongam tidal flat seemed to be in the influence of exposure duration from tidal levels and specific geological topography.

The strengthening of North Atlantic Deep Water during the late Oligocene based on the benthic foraminiferal species Oridorsalis umbonatus (저서성 유공충 Oridorsalis umbonatus의 산출 상태에 기록된 후기 올리고세 북대서양 심층수의 강화)

  • Lee, Hojun;Jo, Kyoung-nam;Lim, Jaesoo
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.489-499
    • /
    • 2018
  • A series of geological events such as the formation of the Antarctic continental ice sheets, the changes in ocean circulation and a mass extinction after the onset of Oligocene has been studied as major concerns by various researches. However, paleoclimatic and paleoceanographic changes during the most period of Oligocene since the Eocene-Oligocene transition (EOT) still remains unclear. Especially, although the late Oligocene warming (LOW) has been assessed as the largest period in the paleoceanographic changes, the detailed understanding on the changed components is very low. The purpose of this study is the reconstruction of the paleoceanographic history during the late Oligocene using core sediments from IODP Expedition 342 Site U1406 performed in J-Anomaly Ridge in North Atlantic. Because North Atlantic deep water (NADW) has flowed southward through the study area since the early Oligocene, this area has been considered to an important location for studies on the changes of NADW. The core sediment analyzed in this study were deposited from about 26.0 to 26.5 Ma as evidenced by both of onboard and shore-based paleomagnetic data, and this is corresponded to the earliest period of LOW. The sediment profile can be divided into three Units (Unit 1, 2 & 3) based on the changes in both of total number and test size of Oridorsalis umbonatus as well as grain size data of clastic sediments. Unit 2 represents largest values in these three data. Because the total number, test size of O. umbonatus and grain size can be proxy records on the oxygen concentration and circulation intensity of deep water, we interpreted that Unit 2 had been deposited during the period of relatively strengthened NADW. Previous Cibicidoides spp. stable isotope results from the low latitude region of the North Atlantic also support our interpretation that is the intensified formation of NADW during the identical period. In conclusion, our results present a new evidence for the previous ideas that the causes on LOW are directly related to the changes in NADW.

Retrieval of Vegetation Health Index for the Korean Peninsula Using GK2A AMI (GK2A AMI를 이용한 한반도 식생건강지수 산출)

  • Lee, Soo-Jin;Cho, Jaeil;Ryu, Jae-Hyun;Kim, Nari;Kim, Kwangjin;Sohn, Eunha;Park, Ki-Hong;Jang, Jae-Cheol;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • Global warming causes climate change and increases extreme weather events worldwide, and the occurrence of heatwaves and droughts is also increasing in Korea. For the monitoring of extreme weather, various satellite data such as LST (Land Surface Temperature), TCI (Temperature Condition Index), NDVI (Normalized Difference Vegetation Index), VCI (Vegetation Condition Index), and VHI (Vegetation Health Index) have been used. VHI, the combination of TCI and VCI, represents the vegetation stress affected by meteorological factors like precipitation and temperature and is frequently used to assess droughts under climate change. TCI and VCI require historical reference values for the LST and NDVI for each date and location. So, it is complicated to produce the VHI from the recent satellite GK2A (Geostationary Korea Multi-Purpose Satellite-2A). This study examined the retrieval of VHI using GK2A AMI (Advanced Meteorological Imager) by referencing the historical data from VIIRS (Visible Infrared Imaging Radiometer Suite) NDVI and LST as a proxy data. We found a close relationship between GK2A and VIIRS data needed for the retrieval of VHI. We produced the TCI, VCI, and VHI for GK2A during 2020-2021 at intervals of 8 days and carried out the interpretations of recent extreme weather events in Korea. GK2A VHI could express the changes in vegetation stress in 2020 due to various extreme weather events such as heatwaves (in March and June) and low temperatures (in April and July), and heavy rainfall (in August), while NOAA (National Oceanic and Atmospheric Administration) VHI could not well represent such characteristics. The GK2A VHI presented in this study can be utilized to monitor the vegetation stress due to heatwaves and droughts if the historical reference values of LST and NDVI can be adjusted in a more statistically significant way in the future work.

Analysis of Climate Change Adaptation Researches Related to Health in South Korea (한국의 건강 분야 기후변화적응 연구동향 분석)

  • Ha, Jongsik
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.139-151
    • /
    • 2014
  • It is increasingly supported by scientific evidence that greenhouse gas caused by human activities is changing the global climate. In particular, the changing climate has affected human health, directly or indirectly, and its adverse impacts are estimated to increase in the future. In response, many countries have established and implemented a variety of mitigation and adaptation measures. However, it is significant to note that climate change will continue over the next few centuries and its impacts on human health should be tackled urgently. The purpose of this paper is to examine domestic policies and research in health sector in adaptation to climate change. It further aims to recommend future research directions for enhanced response to climate change in public health sector, by reviewing a series of adaptation policies in the selected countries and taking into account the general features of health adaptation policies. In this regard, this study first evaluates the current adaptation policies in public health sector by examining the National Climate Change Adaptation Master Plan(2011~2015) and Comprehensive Plan for Environment and Health(2011~2020) and reviewing research to date of the government and relevant institutions. For the literature review, two information service systems are used: namely, the National Science and Technology Information Service(NTIS) and the Policy Research Information Service & Management(PRISM). Secondly, a series of foreign adaptation policies are selected based on the global research priorities set by WHO (2009) and reviewed in order to draw implications for domestic research. Finally, the barriers or constraints in establishing and implementing health adaptation policies are analyzed qualitatively, considering the general characteristics of adaptation in the health sector to climate change, which include uncertainty, finance, technology, institutions, and public awareness. This study provides four major recommendations: to mainstream health sector in the field of adaptation policy and research; to integrate cross-sectoral adaptation measures with an aim to the improvement of health and well-being of the society; to enhance the adaptation measures based on evidence and cost-effectiveness analysis; and to facilitate systemization in health adaptation through setting the key players and the agenda.