• Title/Summary/Keyword: 지구화학적 거동

Search Result 92, Processing Time 0.026 seconds

Thermal Water Level Change and Geochemistry in the Suanbo Area, Korea (수안보지역의 온천수위 변동과 수리지구화학에 관한 연구)

  • Yum, Byoung-Woo;Kim, Yongje
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.59-65
    • /
    • 1999
  • Both the groundwater changes due to different pumping rates and the geochemistry of thermal waters in the Suanbo area are considered in this study. The observation of groundwater level change since 1991 shows that the change is directly correlated with pumping rates of thermal waters and reveals the retardation of ca. 5 weeks after pumping. The hydrogeological aquifer in the area is under reducing condition. The thermal waters are of Na-HCO$_3$ type. and are alkaline (pH=8.5∼8.7) with low TDS values (274∼284 mg/l) and high concentrations of Na (68∼72 mg/l). F (6.4∼8.9 mg/l), and HCO$_3$(136∼146 mg/l). Oxygen and hydrogen isotope ratios of thermal water indicate a meteoric water origin. The activities of Rn-222 and Ra-226 in both thermal water and local groundwater were determined to delineate possible geochemical controls on the Rn-222 and Ra-226. The Rn-222 concentrations are several orders of magnitude greater than the Ra-226 concentrations. The concentrations of Rn-222 range from 190 to 7.490 pCi/1 with an average of 2,522 pCil/l. and those of Ra-226 average 0.32 pCi/1 with the range from 0.25 to 0.42 pCi/1. The concentrations of Rn-222 and Ra-226 are inversely correlated with EC and alkalinity. The pH it positively correlated with Ra-226. The correlation between Rn-222 and Ra-226 is poor. Thermal waters in the study area are produced from highly fractured phyllite. The thermal water qualify. CSAMT (controled-source audiofrequency magnetotelluric) prospecting, and petrological evidences, however, indicate that the heat is possibly transmitted through deep normal faults reaching a deep granite batholith, and the phyllite acts only as a groundwater pathway.

  • PDF

Electrophoretic Characteristics of the Clay Particles Affected by Chemical Species of Leachate (매립지 침출수 화학종에 따른 점토입자의 전기영동 특성)

  • Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam;Park, Jea-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.217-228
    • /
    • 2009
  • In case of application of electrophoresis method for leakage restoration of waste impoundment, main points of consideration were to evaluate the mobility of clay particles by electrophoretic force and capacity of leakage repair in leachate electrolyte system contained with various chemical species. However, the flocculation phenomena of clay particles induced by electrochemical interaction between various chemical species and clay particles would cause the big problems in electrophoresis method. Therefore, a series of laboratory tests such as one-dimensional electrophoresis and gravitational experiments were carried out in order to identify the specific chemical species affected flocculation of clay particles and the range of chemical concentration in leachate. In addition, the characteristics of clay particle behavior with chemical species and concentration range in leachate were analized using the concept of the settling velocity, zeta potential, and electrophoretic velocity.

A Geochemical Study on the Enrichment of Trace Elements in the Saline Ash Pond of a Bituminous-burning Power Plant in Korea (국내 모 유연탄 발전소의 석탄회 매립 염호수 내 미량원소 농집에 대한 지구화학적 연구)

  • Kim, Seok-Hwi;Choi, Seung-Hyun;Jeong, Gi Young;Lee, Jae-Cheol;Kim, Kangjoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • In present study, we geochemically investigated the fresh coal ashes and the saline ash pond of an electric power plant in Korea, which burns imported bituminous coals. The goals are to see the chemical changes of the ash pond by reaction with coal ashes and to investigate the relative leachability of elements from the ashes by reaction with saline waters. For this study, one fresh fly ash, one fresh bottom ash, and 7 water samples were collected. All the ash samples and 2 water samples were analyzed for 55 elements. The results indicated that the fly ashes are enriched with chalcophilic elements such as Cu, Zn, Ga, Ge, Se, Cd, Sb, Au, Pb, and B relative to other elements. On the other hand, concentrations of As, Ba, Co, Ga, Li, Mn, Mo, Sb, U, V, W, and Zr are much higher in the ash pond than those dissolved in the seawater. Ag, Bi, Li, Mo, Rb, Sb, Sc, Se, Sn, Sr, and W show high ratios of elemental concentrations in pond water to those in the fly ash. Our results imply that the leaching of trace elements is regulated by geochemical controls such as solubility and adsorption even though the trace elements are relatively enriched on the ash surfaces after the coal combustion due to their volatilities.

Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine (송천광산의 풍화광미 내 중금속 및 비소 거동 특성)

  • Lee, Woo-Chun;Kim, Young-Ho;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-139
    • /
    • 2010
  • Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

Physicochemical and Archaeometric Characteristics of Goryeo Period Potteries from the Sandongri in Seosan, Korea (서산 산동리 고려시대 도기의 물리화학적 및 고고과학적 특성)

  • Lee, Chan Hee;Jin, Hong Ju
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.123-139
    • /
    • 2016
  • The excavated potteries of Goryeo Period from the Sandongri archaeological site in Seosan were studied on physicochemical analyses. Surface color of the samples are mainly grayish blue, and showed the natural glaze by melting the body soils during the burning. Partly, swelling surface are observed bloated marks because of blow out gas by burning. The potteries are some possibility of making the similar source clay on the basis of magnetic susceptibilities (about $1{\times}10^{-3}SI\;unit$) and general occurrences. Values of specific gravity, apparent porosity and absorption ratio are divided two groups as highly different cases of bloating surface samples. The source clay of the potteries used mainly microcrystalline clay, the mineral compositions are quartz and some colored minerals. Based on the analysis, the burning temperature of the potteries are assumed that they were around $1,100^{\circ}C$ because detection of quartz and mullite within hard and compact matrices. As geochemical variations of the samples, evolution trends of rare earth, compatible and incompatible elements showed very similar patterns excepting the some major elements, that means the potteries are interpreted to making by elutriation processes using the same raw clays from very similar basement rocks of genetically.

Characteristics of Natural Arsenic Contamination in Groundwater and Its Occurrences (자연적 지하수 비소오염의 국내외 산출특성)

  • Ahn Joo Sung;Ko Kyung-Seok;Lee Jin-Soo;Kim Ju-Yong
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.547-561
    • /
    • 2005
  • General characteristics of groundwater contamination by As were reviewed with several recent researches, and its occurrence in groundwater of Korea was investigated based on a ffw previous studies and a groundwater quality survey in Nonsan and Geumsan areas. In Bangladesh, which has been known as the most serious arsenic calamity country, about $28\%$ of the shallow groundwaters exceeded the Bangladesh drinking water standard, $50{\mu}g/L$, and it was estimated that about 28 million people were exposed to concentrations greater than the standard. Groundwater was characterized by circum-neutral pH with a moderate to strong reducing conditions. Low concentrations of $SO_4^{2-}$ and $NO_3^-$, and high contents of dissolved organic carbon (DOC) and $NH_4^+$ were typical chemical characteristics. Total As concentrations were enriched in the Holocene alluvial aquifers with a dominance of As(III) species. It was generally agreed that reductive dissolution of Fe oxyhydroxides was the main mechanism for the release of As into groundwater coupling with the presence of organic matters and microbial activities as principal factors. A new model has also been suggested to explain how arsenic can naturally contaminate groundwaters far from the ultimate source with transport of As by active tectonic uplift and glaciatiion during Pleistocene, chemical weathering and deposition, and microbial reaction processes. In Korea, it has not been reported to be so serious As contamination, and from the national groundwater quality monitoring survey, only about $1\%$ of grounwaters have concentrations higher than $10{\mu}g/:L.$ However, it was revealed that $19.3\%$ of mineral waters, and $7\%$ of tube-well waters from Nonsan and Geumsan areas contained As concentrations above $10{\mu}g/:L.$. Also, percentages exceeding this value during detailed groundwater quality surveys were $36\%\;and\;22\%$ from Jeonnam and Ulsan areas, respectively, indicating As enrichment possibly by geological factors and local mineralization. Further systematic researches need to proceed in areas potential to As contamination such as mineralized, metasedimentary rock-based, alluvial, and acid sulfate soil areas. Prior to that, it is required to understand various geochemical and microbial processes, and groundwater flow characteristics affecting the behavior of As.

Mineralogical and Geochemical Characteristics of Earthenwares and Clay excavated from Hapsuri, Yeoncheon (연천 합수리 유적 출토 토기·토양의 광물학 및 지구화학적 특성)

  • Kim, Su Kyoung;Han, Lee Hyeon;Heo, Jun Su;Han, Min Su;Lee, Han Hyoung;Moon, Eun Jung;Seo, Min Seok
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.102-121
    • /
    • 2012
  • The purpose of this study is to verify homoteneity of soil and earthenwares and identify firing temperature of earthenwares excavated from Yeoncheon Hapsuri: two earthenwares of the New Stone Age(YCP-1, YCP-2); two of the Bronze Age(YCP-3, YCP-4); and four of the Three States Age(YCP-4~8). The comparative analysis of soil (YCRM) and the earthenwares displays that soil geochemical patterns were similar to YCP-1, YCP-3, YCP-5, YCP-6, YCP-7 and YCP-8. On the other hand, YCP-2 and YCP-4 did not show the similarity to the one of soil because they had been enriched with MgO by contained talc and chlorite. Based on the absorption rate, specific gravity, structural characteristics and XRD analysis, firing temperature has been estimated: for YCP-7 and YCP-8 was $870^{\circ}C$ or over; for YCP-2 and YCP-4 $800^{\circ}C$ or below; and for YCP-1, YCP-3, YCP-5 and YCP-6 between 800 and $870^{\circ}C$. Mineralogical analysis displays that the geochemical pattern of the soil is coincide with the one around Yeoncheon Hapsuri site, which also shows similarity to the one of earthenwares. Such result persuades that the excavated earthenwares were produced with the soils within the precinct of the archaeological sites.

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF

Material Characteristics and Provenance Interpretation of the Stone Moulds for Bronze Artifacts from Galdong Prehistoric Site, Korea (완주 갈동유적 출토 청동기 용범의 재질특성 및 산지해석)

  • Lee, Chan-Hee;Kim, Ji-young;Han, Su-Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.387-419
    • /
    • 2005
  • Material characteristics and provenance interpretation of the raw materials for the stone moulds of bronze artifacts excavated in Galdong Prehistoric site were studied. The stone moulds are made of igneous hornblendite with coarse-grained holocrystalline textures. The surface color shows greenish grey to dark green with greasy luster. The value of magnetic susceptibility of the moulds ranges from 19.2 to 71.0 (mean ; $39.2{\times}10^{-3}$ SI unit).High value of magnetic susceptibility indicates high contents of magnetite as a ferromagnetic mineral and the wide range of the values are due to heterogeneous distribution of magnetite. These are characteristics of basic igneous rocks. The rock-forming minerals of the moulds mainly consist of amphibole, plagioclase and biotite. Pyroxene, chlorite and opaque minerals are also rarely present. A large quantity of carbon was detected on the dark black crust near the surface of the moulds by quantitative analysis. Geological field survey was carried out to identify a source of the raw materials of the stone moulds around Galdong site. Hornblendite or gabbroic rocks being similar to the moulds forming rock occur at Daeseongri, Sikcheonri and Gyodongri in Jangsoo, and Illdaeri in Namwon about 50 kilometers away from the site in a straight line. They have similarity with the moulds forming rock in magnetic susceptibility ranging from 16.1 to 72.4 (mean ; $39.9{\times}10^{-3}$ SI unit). Among those hornblendite or gabbroic rocks, one in Jangsoo area is the most similar to the moulds forming rock on the basis of petrological and mineralogical characteristics. Comparing normalized patterns of major, minor, rare earth and immobile elements contents of the moulds to them of hornblendite in Jangsoo area, geochemical evolution trend and behavior characteristics show affinities between them. It suggests that the moulds forming rock and hornblendite in Jangsoo area have been originated from cogenetic magma. This hornblendite is easy to engrave an inscription or detail graphics on the surface because of its softness, and has good thermal conductivity. Hornblendite in Sikcheonri, Jangsoo is particularly produced and used for stone wares until the present day. Therefore, it is probable that the stone materials of the moulds has been imported from Daeseongri, Sikcheonri and Gyodongri in Jangsoo area. However, it cannot be completely excluded the possibility that the material of the moulds was supplied from Illdaeri in Namwon area appearing the same type of hornblendite on a small outcrops. It is necessary to carry out further archaeological studies to identify several possibilities of migration process of raw materials.

Characteristics of Geochemical Behaviors of Trace Metals in Drainage from Abandoned Sechang Mine (세창 폐금속광산 수계에서 미량원소의 지구화학적 거동특성 규명)

  • Kang Min-Ju;Lee Pyeong-Koo;Youm Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.213-227
    • /
    • 2006
  • The geochemical evolution of mine drainage and leachate from waste rock dumps and stream water in Pb-As-rich abandoned Sechang mine area was investigated to elucidate mechanisms of trace metals. Total and sequential extractions were applied to estimate the distribution of trace metals in constituent phases of the waste rocks and to assess the mobility of trace metals according to physicochemical conditions. These discharged waters varied largely in chemical composition both spatially and temporally, and included cases with significant]y low pH (in the range 2.1-3.3), and extremely sulphate (up to 661 mg/l and metal contents (e.g. up to 169 mg/l for Zn, 27 mg/l for As, 3.97 mg/l for Pb, 2.99 mg/l for Cu, and 1.88 mg/l for Cd). Arsenic and heavy metal concentrations at the down-stream of Sechang mine have been decreased nearly to the background level in downstream sites (sites 8 and 16) without any artificial treatments. The oxidation of Fe-sulfides and the subsequent hydrolysis, of Fe(II), with precipitation of poorly crystallized minerals, constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace metals (i.e. Fe and As) to rivers. The dilution of drainage by mixing with pristine waters provoked an additional decrease of trace metal concentrations and a progressive pH increase. On the other hand, the most soluble cations (i.e. Zn) remained significantly as dissolved solutes until the pH was raised to approximately neutral values. With respect to ecotoxicity, it is likely that the Zn pollution is of particular concern in Sechang mine area. This was confirmed by the sequential extraction experiment, where Zn in wet waste-rock samples occurred predominantly in the exchangeable fraction (65-89% of total), while Pb was the highest in the reducible and carbonate fractions, and Cd, Cu and As in the residual fraction. Pb concentration in the readily available exchangeable fraction (34-48% of total) was dominated for dried waste rock samples. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreased in the order of Zn>Pb>Cd>As=Cu.