• Title/Summary/Keyword: 지구와 우주

Search Result 773, Processing Time 0.023 seconds

An Analysis of Systems Thinking Revealed in Middle School Astronomy Classes: The Case of Science Teachers' Teaching Practices for the Unit of Stars and Universe (중학교 과학 천문 수업에서 나타나는 시스템 사고 분석: 별과 우주 단원에 대한 과학 교사의 교수 실행 사례)

  • Oh, Hyunseok;Lee, Kiyoung;Park, Young-Shin;Maeng, Seungho;Lee, Jeong-A
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.591-608
    • /
    • 2015
  • The purpose of this study was to analyze system thinking revealed in science teachers' teaching practices of middle school astronomy classes. Astronomy lessons were video-taped from four eighth grade science teachers. The video recordings were all transcribed and analyzed by employing a framework for systems thinking analysis after modifying an existing frame of hierarchial structure used in relevant previous studies. In addition, four participants were interviewed in order to uncover their orientation toward teaching using video stimulated recall method. Findings are as follows: All participating teachers were not able to employ the four levels of system thinking appropriately and only utilized the low level of systems thinking. They also demonstrated teacher-centered practices for employing system thinking despite their student-centered orientation toward teaching. The main reason for these results may be that teachers focused more on spatial thinking, than on system thinking as well as the lack of teacher's knowledge about the content and formative assessment of non-earth science teachers. Implications on how to effectively employ the system thinking in astronomy class are discussed in this paper.

Comparative Analysis of Middle School Science Curriculum between Korea and Israel (우리나라와 이스라엘의 중학교 과학과 교육과정 비교연구)

  • Jang, Jin-Ju;Seo, Hae-Ae;Song, Bang-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.5
    • /
    • pp.443-457
    • /
    • 2003
  • The research aimed to compare science curriculum between Korea and Israel and find out characteristics of science curriculum in Israel at middle school level. The middle school 'science' of the 7th revised national curriculum in Korea and middle school 'science and technology' in Israel were compared. Among characteristics of the Israel curriculum of 'science and technology,' distinct ones are as follows: First, 'science and technology' was most highly emphasized with the largest number of time allotment among all subjects at middle school level in Israel. Second, the contents of 'science and technology' were classified into seven areas of 'energy and interaction', 'materials', 'organism', 'earth and the universe', 'technological systems and products' . 'information and communication',and 'ecosystems' rather than four areas of energy, materials, life and earth in Korea. Third, 'organism' was allocated with the highest number of hours among seven areas. Fourth, objectives of each content of 'science and technology' were divided into three categories: scientific aspect, technological aspect, and social value and objectives of each category were related to one another. This characteristic seems to stress STS, multidisciplinary, and interdisciplinary approaches in 'science and technology' in Israel. Such characteristics of the 'science and technology' education in Israel are likely to make significant contributions to establish human resources of highly developing science and technology including IT, BT, NT, ST in the future society. Reflecting upon the characteristics of 'science and technology' education in Israel, Korea might seek for ways to improve its national power based on science and technology through strengthening science and emphasizing science and technology contents among school curriculum.

Feasibility of Using Norad Orbital Elements for Pass Programming and Catalog Generation for High Resolution Satellite Images (고해상도 위성영상 촬영계획 수립 및 카탈로그 생성을 위한 NORAD 궤도 데이터의 이용 가능성 연구)

  • 신동석;김탁곤;곽성희;이영란
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • At present, many ground stations all over the world are using NORAD orbit element data in order to track and communicate with Earth orbiting satellites. The North American Aerospace Defense Command (NORAD) observes thousands of Earth orbiting objects on daily basis and provides their orbital information via internet. The orbital data provided by NORAD, which is also called two line element (TLE) sets, allows ground stations to predict the time-varying positions of satellites accurately enough to communicate with the satellites. In order to complete the mission of a high resolution remote sensing satellite which requires very high positional determination and control accuracy, however, a mission control and tracking ground station is dedicated for the observation and positional determination of the satellite rather than using NORAD orbital sets. In the case of KITSAT-3, NORAD orbital elements are currently used for image acquisition planning and for the processing of acquired images due to the absence of a dedicated KITSAT-3 tracking ground system. In this paper, we tested and analyzed the accuracy of NORAD orbital elements and the appropriate prediction model to determine how accurately a satellite acquisites an image of the location of interest and how accurately a ground processing system can generate the catalog of the images.

National Disaster Scientific Investigation and Disaster Monitoring using Remote Sensing and Geo-information (원격탐사와 공간정보를 활용한 국가 재난원인 과학조사 및 재난 모니터링)

  • Kim, Seongsam;Kim, Jinyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.763-772
    • /
    • 2019
  • High-resolution satellites capable of observing the Earth periodically enhance applicability of remote sensing in the field of national disaster management from national disaster pre-monitoring to rapid recovery planning. The National Disaster Management Research Institute (NDMI) has been developed various satellite-based disaster management technologies and applied to disaster site operations related to typhoons and storms, droughts, heavy snowfall, ground displacement, heat wave, and heavy rainfall. Although the limitation of timely imaging of satellite is a challenging issue in emergent disaster situation, it can be solved through international cooperation to cope with global disasters led by domestic and international space development agencies and disaster organizations. This article of special issue deals with the scientific disaster management technologies using remote sensing and advanced equipments of NDMI in order to detect and monitor national disasters occurred by global abnormal climate change around the Korean Peninsula: satellite-based disaster monitoring technologies which can detect and monitor disaster in early stage and advanced investigation equipments which can collect high-quality geo-information data at disaster site.

Accuracy Assessment of the Satellite-based IMERG's Monthly Rainfall Data in the Inland Region of Korea (한반도 육상지역에서의 위성기반 IMERG 월 강수 관측 자료의 정확도 평가)

  • Ryu, Sumin;Hong, Sungwook
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • Rainfall is one of the most important meteorological variables in meteorology, agriculture, hydrology, natural disaster, construction, and architecture. Recently, satellite remote sensing is essential to the accurate detection, estimation, and prediction of rainfall. In this study, the accuracy of Integrated Multi-satellite Retrievals for GPM (IMERG) product, a composite rainfall information based on Global Precipitation Measurement (GPM) satellite was evaluated with ground observation data in the inland of Korea. The Automatic Weather Station (AWS)-based rainfall measurement data were used for validation. The IMERG and AWS rainfall data were collocated and compared during one year from January 1, 2016 to December 31, 2016. The coastal regions and islands were also evaluated irrespective of the well-known uncertainty of satellite-based rainfall data. Consequently, the IMERG data showed a high correlation (0.95) and low error statistics of Bias (15.08 mm/mon) and RMSE (30.32 mm/mon) in comparison to AWS observations. In coastal regions and islands, the IMERG data have a high correlation more than 0.7 as well as inland regions, and the reliability of IMERG data was verified as rainfall data.

Characteristic of Precipitated Metal Carbonate for Carbon Dioxide Conversion Using Various Concentrations of Simulated Seawater Solution (해수 농축수 내 금속 이온 농도에 따른 이산화탄소 전환 생성물의 특성연구)

  • Choi, Eunji;Kang, Dongwoo;Yoo, Yunsung;Park, Jinwon;Huh, Il-sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.539-546
    • /
    • 2019
  • Global warming has mentioned as one of the international problems and these researches have conducted. Carbon Capture, Utilization and Storage (CCUS) technology has improved due to increasing importance of reducing emission of carbon dioxide. Among of various CCUS technologies, mineral carbonation can converted $CO_2$ into high-cost materials with low energy. Existing researches has been used ions extracted solid wastes for mineral carbonation but the procedure is complicated. However, the procedure using seawater is simple because it contained high concentration of metal cation. This research is a basic study using seawater-based wastewater for mineral carbonation. 3 M Monoethanolamine (MEA) was used as $CO_2$ absorbent. Making various concentrations of seawater solution, simulated seawater powder was used. Precipitated metal carbonate salts were produced by mixing seawater solutions and $rich-CO_2$ absorbent solution. They were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Thermogravimetric Analysis (TGA) and studied characteristic of producing precipitated metal carbonate and possibility of reusing absorbent.

A Study on Scientific Concepts and Teaching and Learning Methods in the Activities of the Nuri Curriculum Teacher Guidebooks for Ages 3-5 in Accordance with Themes (생활주제를 중심으로 본 3-5세 연령별 누리과정 교사용지도서 활동의 과학개념 및 교수학습방법 분석)

  • Choi, Hye Yoon
    • Korean Journal of Child Education & Care
    • /
    • v.18 no.4
    • /
    • pp.65-89
    • /
    • 2018
  • Objective: The purpose of this study is to analyze the science concepts and teaching and learning methods presented in the science education-related activities of the Nuri Curriculum teacher guidebooks for ages 3-5. Methods: The research data included 772 activities related to science education in the teachers' guidebook. The analysis of science concepts was based on physical science (force and motion, physical structure, electricity and magnetism, light and shadow, sound properties), chemistry (material properties, material reaction), life science (organizational structure, growth and change, heredity and evolution, animal plant and human relationships), earth science (earth system interaction, earth system structure, and universe), engineering (designed world, engineering design, engineering, technology and society) and ecology (environment preservation). Teaching and learning methods were analyzed according to the types of small and large group activities and of free play activities. Results: Science concepts were mainly presented in the fields of engineering, chemistry, and life science commonly among children aged 3-5, whereas the concepts of physical science were lowly presented in all ages. Science concepts appeared mainly in the daily subjects of 'animal plant and nature', 'life tools', 'environment and life', and 'spring, summer, autumn and winter'. As the teaching and learning method, free paly activities (science area, free outdoor selection activity, math and manipulative activity) were mostly used for the ages of 3 and 4, and small and large group activities (cooking, story sharing, music activity) were for the age of 5. Conclusion/Implications: It is necessary to select the level of science area and concept that can be taught according to the age of children and the timing of the teaching.

An Analysis of 'The Phases of the Moon', Contents of 9th Grade Science Textbook (중학교 3학년 과학 교과서의 '달의 위상변화' 문제점 분석)

  • Chae, Dong-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.874-885
    • /
    • 2009
  • The purpose of this study is to analyze illustrations, contents, and experiments in 6 kinds of science textbook from the 9th grade covering the phases of the Moon (on the phases of the Moon in six 9th grade science textbook) and to suggest coherent and effective contents and frame of the science textbook. Hence, the researcher decided the study problem. The study problems are as follows; 'Are the illustrations in the science textbook presented to help understand the phases of the Moon depending on the position of the observer?', 'Does the contents of the book clearly mention the phases of the Moon?', 'Can students understand the phases of the Moon through the experiments in the science textbook?', 'Do illustrations, contents, and experiment of the science textbook consistently explain the phases of the Moon?'. 10 persons (9graduate students including the researcher) took part in this study. All things unanimously agreed upon by all participants were reflected in the results. The results are as follows: First, the universal observer's view point is mixed with the earth observer's view in the illustration of these science textbook regarding the phases of the Moon. Moreover, illustrations of some textbooks are presented with such words as 'sunrise', 'midnight' and consequently contain too much. Second, the contents of the science textbook concerning the phases of the Moon is not described clearly. In addition, they don't give clear and detailed explanations for the reason of these changes. Third, all of the textbooks, except one textbook, describe the experiment regarding the phases of the Moon with the earth observer's view point but don't specifically mention that the view point is that of the earth observer's view point. Fourth, illustrations, contents, and experiments in the science textbook don't coherently explain the phases of the Moon. In addition, it is confirmed through the process of the result analysis that the described contents in the science curriculum is not well constructed or logical.

Trend Analysis of Lunar Exploration Missions for Lunar Base Construction (달 기지 건설을 대비한 국내외 달 탐사 동향 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.144-152
    • /
    • 2018
  • Lunar exploration, which was led by the United States and the former Soviet Union, ceased in the 1970s. On the other hand, since massive lunar ice deposits and rare resources were found in 1990s, European Union, China, Japan, and India began to participate in lunar exploration to secure future lunar resource as well as to construct a lunar base. In the near future, it is expected that national space agencies and private industries will participate in the lunar exploration together. Their missions will include the exploration and sample return of lunar resources. Lunar resources have a close relationship with the lunar in-situ resource utilization (ISRU). To construct a lunar base, it is inevitable to bring huge amounts of resources from Earth. Water and oxygen, however, will need to be produced from local lunar resources and lunar terrain feature will need to be used to construct the lunar base. Therefore, in this paper, the global trends on lunar exploration and lunar construction technology are investigated and compared along with the ISRU technology to support human exploration and construct a lunar base on the Moon's surface.

AUTOMATED STREAK DETECTION FOR HIGH VELOCITY OBJECTS: TEST WITH YSTAR-NEOPAT IMAGES (고속이동천체 검출을 위한 궤적탐지 알고리즘 및 YSTAR-NEOPAT 영상 분석 결과)

  • Kim, Dae-Won;Byun, Yong-Ik;Kim, Su-Yong;Kang, Yong-Woo;Han, Won-Yong;Moon, Hong-Kyu;Yim, Hong-Suh
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.385-392
    • /
    • 2005
  • We developed an algorithm to efficiently detect streaks in survey images and made a performance test with YSTAR-NEOPAT images obtained by the 0.5m telescope stationed in South Africa. Fast moving objects whose apparent speeds exceed 10 arcsec/min are the main target of our algorithm; these include artificial satellites, space debris, and very fast Near-Earth Objects. Our algorithm, based on the outline shape of elongated sources employs a step of image subtraction in order to reduce the confusion caused by dense distribution of faint stars. It takes less than a second to find and characterize streaks present in normal astronomical images of 2K format. Comparison with visual inspection proves the efficiency and completeness of our automated detection algorithm. When applied to about 7,000 time-series images from YSTAR telescope, nearly 700 incidents of streaks are detected. Fast moving objects are identified by the presence of matching streaks in adjoining frames. Nearly all of confirmed fast moving objects turn out to be artificial satellites or space debris. Majority of streaks are however meteors and cosmic ray hits, whose identity is often difficult to classify.