• Title/Summary/Keyword: 지구계 이해

Search Result 127, Processing Time 0.025 seconds

Assessing Middle School Students' Understanding of Radiative Equilibrium, the Greenhouse Effect, and Global Warming Through Their Interpretation of Heat Balance Data (열수지 자료 해석에서 드러난 중학생의 복사 평형, 온실 효과, 지구 온난화에 대한 이해)

  • Chung, Sueim;Yu, Eun-Jeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.770-788
    • /
    • 2021
  • This study aimed to determine whether middle school students could understand global warming and the greenhouse effect, and explain them in terms of global radiative equilibrium. From July 13 to July 24 in 2021, 118 students in the third grade of middle school, who completed a class module on 'atmosphere and weather', participated in an online assessment consisting of multiple-choice and written answers on radiative equilibrium, the greenhouse effect, and global warming; 97 complete responses were obtained. After analysis, it was found that over half the students (61.9%) correctly described the meaning of radiative equilibrium; however, their explanations frequently contained prior knowledge or specific examples outside of the presented data. The majority of the students (92.8%) knew that the greenhouse effect occurs within Earth's atmosphere, but many (32.0%) thought of the greenhouse effect as a state in which the radiative equilibrium is broken. Less than half the students (47.4%) answered correctly that radiative equilibrium occurs on both Earth and the Moon. Most of the students (69.1%) understood that atmospheric re-radiation is the cause of the greenhouse effect, but few (39.2%) answered correctly that the amount of surface radiation emitted is greater than the amount of solar radiation absorbed by the Earth's surface. In addition, about half the students (49.5%) had a good understanding of the relationship between the increase in greenhouse gases and the absorption of atmospheric gases, and the resulting reradiation to the surface. However, when asked about greenhouse gases increases, their thoughts on surface emissions were very diverse; 14.4% said they increased, 9.3% said there was no change, 7.2% said they decreased, and 18.6% gave no response. Radiation equilibrium, the greenhouse effect, and global warming are a large semantic network connected by the balance and interaction of the Earth system. This can thus serve as a conceptual system for students to understand, apply, and interpret climate change caused by global warming. Therefore, with the current climate change crisis facing mankind, sophisticated program development and classroom experiences should be provided to encourage students to think scientifically and establish scientific concepts based on accurate understanding, with follow-up studies conducted to observe the effects.

Analysis of High School Students' Understanding Levels about Earth Science terms Written in Chinese Characters (한자로 된 지구과학 용어에 대한 고등학생의 이해 수준)

  • Jeong, Jin-Woo;Park, Hee-Moo;Jung, Jae-Gu
    • Journal of the Korean earth science society
    • /
    • v.25 no.5
    • /
    • pp.303-314
    • /
    • 2004
  • The purpose of this study is to analyze high school students' understanding levels about earth science terms written in Chinese characters according to learners' characteristics. In order to investigate how the responses vary according to their characteristics, first of all, proper scientific terms are selected, and then corre sponding questions about them are offered as subjects, which consists of a Korean characters type, a picture type, and a Korean and Chinese characters type. During paper test and interview, the questions are given to fifteen students from general high schools in Jecheon, Chungbuk Province. The results of the study are as follows; Students in formal operation level and field-independency answered very well and also the terms of Chinese characters type and picture type improve the students' understanding and memorization. Generally, Chinese characters have more positive influence on their learning than the negative. Therefore, in general, it seems that it's more effective to explain the sound and meaning of terms in detail and to give learners enough time to draw a picture about each term by themselves when scientific terms are delivered to students in Chinese characters in class.

The Influence of Global Science Literacy-Oriented Instruction on Students' Views of the Nature of Science (글로벌 과학적 소양 함양을 위한 수업이 학생들의 과학의 본성에 대한 관점에 미치는 영향)

  • Yu, Eun-Jeong;Oh, Hyun-Seok;Kim, Chan-Jong
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.602-616
    • /
    • 2008
  • The purpose of this study is to investigate the influence of global science literacy-oriented instruction on students' views of the nature of science. The participants were 65 male students in 8th grade, and they were taught for five weeks about the Unit of "Earth and Star" that was designed based on global science literacy. Survey was conducted to determine the students' views of the nature of science before and after the instruction. Results revealed that it was hard to change students' views of the nature of science during the short period of time; however, in the sociological aspect, the students acquired relatively more improved students' views of the nature of science than the other aspects including philosophical, psychological, and historical aspects.

Introduction of the Global Geodetic Observing System (지구측지관측시스템(GGOS) 연구동향)

  • Shin, Young-Hong;Park, Jong-Uk;Seo, Ki-Weon
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.381-397
    • /
    • 2009
  • The Modem Geodesy monitors physical and geometrical shape and motion of the Earth and, more importantly, its temporal variations with unprecedented precision. It provides accurate and stable reference frames for Earth observations in the Space era. Furthermore, with an aid of interdisciplinary approaches, it also traces the causes of the variations in shape and motion of the Earth and eventually contributes to a better understanding of the Earth system. The International Association of Geodesy (IAG) has established the Global Geodetic Observing System (GGOS) to integrate the multitude of geodetic tools and tried to contribute to the management of global environmental changes as a partner of the Global Earth Observation System of Systems (GEOSS). Here we introduce the contribution of geodesy to the various fields of Earth Science by focusing on GGOS and encourage interdisciplinary researches.

Validation of Satellite Altimeter-Observed Significant Wave Height in the North Pacific and North Atlantic Ocean (1992-2016) (북태평양과 북대서양에서의 위성 고도계 관측 유의파고 검증 (1992-2016))

  • Hye-Jin Woo;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.135-147
    • /
    • 2023
  • Satellite-observed significant wave heights (SWHs), which are widely used to understand the response of the ocean to climate change, require long-term and continuous validation. This study examines the accuracy and error characteristics of SWH observed by nine satellite altimeters in the North Pacific and North Atlantic Ocean for 25 years (1992-2016). A total of 137,929 matchups were generated to compare altimeter-observed SWH and in-situ measurements. The altimeter SWH showed a bias of 0.03 m and a root mean square error (RMSE) of 0.27 m, indicating relatively high accuracy in the North Pacific and North Atlantic Ocean. However, the spatial distribution of altimeter SWH errors showed notable differences. To better understand the error characteristics of altimeter-observed SWH, errors were analyzed with respect to in-situ SWH, time, latitude, and distance from the coast. Overestimation of SWH was observed in most satellite altimeters when in-situ SWH was low, while underestimation was observed when in-situ SWH was high. The errors of altimeter-observed SWH varied seasonally, with an increase during winter and a decrease during summer, and the variability of errors increased at higher latitudes. The RMSEs showed high accuracy of less than 0.3 m in the open ocean more than 100 km from the coast, while errors significantly increased to more than 0.5 m in coastal regions less than 15 km. These findings underscore the need for caution when analyzing the spatio-temporal variability of SWH in the global and regional oceans using satellite altimeter data.

Tutorial on the Coordinate Transforms in Applied Geophysics (물리탐사에 유용한 좌표계 회전 정리)

  • Song, Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • This tutorial summarizes the coordinate transforms for formulating geophysical problems. To ensure mathematical consistency, this discussion begins with the right-hand rule. Further, the concepts of active and passive transforms are introduced. By extending these concepts, the coordinate transform and its inverse between two coordinates are related to the matrix transpose. The yaw-pitch-roll rotation and the azimuth-deviation-tool face rotation transforms are described as the most frequently used schemes, and the relation between the Rodrigues' rotation formula and these two transforms are mathematically explained. The "Gimbal Lock" problem inherent in yaw-pitch-roll rotation is schematically presented and mathematically derived. As a useful tool overcome this problem, the principle and usage of the quaternion is also described.

Impact of arctic fire on the water cycle using GFED datasets and Community Land Model (화재 자료와 CLM 모형의 융합을 통한 화재의 극지방 물순환 영향)

  • Seo, Hocheol;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.100-100
    • /
    • 2021
  • IPCC 5차 보고서에 따르면 지구 평균 기온상승은 저위도 보다 극지방에서 더욱 뚜렷하게 나타나며 이러한 기후변화는 극지 생태계의 변화를 초래한다. 이러한 기후변화에 따른 극지 생태계의 변화를 분석 및 예측하기 위하여 지면-생태계 모형을 구축하고 극지방 생태계, 수문 및 탄소 순환 등을 모의하는 연구들이 많이 진행되고 있다. 최근 극지 지역에서는 기후변화로 인하여 화재 발생 빈도가 증가하고 있으며, 이로 인하여 극지 생태계뿐 아니라 물순환에 많은 영향을 미치고 있다. 하지만 지면-생태계 모형안의 화재 시뮬레이션은 화재의 원인 파악의 부족, 입력자료의 부족, 화재 역학 이해의 부족 등의 한계가 존재한다. 본 연구에서는 2001~2012년 동안 위성에서 관측된 화재면적 자료인 Global Fire Emissions Database (GFED) v4 자료와 지면-생태계 모형인 NCAR Community Land Model (CLM)-biogeochemistry (BGC) 와의 실시간 융합을 통하여 기존 화재 시뮬레이션의 한계점을 보완하고자 하였다. 기존 CLM-BGC 모형을 통한 증발산량, 화재 자료-모형의 융합을 통한 증발산량 결과와 Moderate Resolution Imaging Spectroradiometer (MODIS) 증발산량 자료와의 비교를 통하여 증발산량 모의에 화재의 중요성을 분석하고자 한다. 또한, 유출량 뿐만 아니라 토양수분의 변화를 시·공간적 변화를 분석함으로써 화재가 극지방 물순환에 미치는 영향을 나타내었다. 또한, 본 연구를 통하여 미래 기후변화에 따른 극지방의 생태계 및 물순환을 모의하기 위하여 화재 시스템 구축의 중요성을 제시하였다.

  • PDF

The Conceptions of Astronomical Distance of Elementary School Teachers (초등학교 교사들의 천문학적 거리에 대한 개념 연구)

  • Jeong, Jin-Woo;Han, Shin
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.827-838
    • /
    • 2010
  • The purpose of this study is to identify the conceptions of elementary school teachers regarding the variation scale about astronomical distance and its accuracy with distance increased. The astronomical distance questionnaire was administered to 69 elementary school teachers, then; three teachers were selected to interview about their conceptions. Results showed that many elementary school teachers overestimated the distance from the Earth to the Moon and to the Sun, and dramatically underestimated the distances to the nearest star and to the nearest galaxy. They inferred astronomical distance with the use of both intuitive (psychological) measure and theoretical (calculative) measure. They well recited the terminology such as AU and a light-year, yet they did not show a good understanding of what the terms exactly means. Some teachers thought that the distance to Neptune is farther than the distance from Earth to the nearest star. There was a considerable variability in the participants' estimates of astronomical distances. Elementary school teachers showed a tendency to overestimate the distance as it gradually increases to the outer solar system.

Wetlands Simulation using CLM-FATES (CLM-FATES 모델을 이용한 습지 모의 )

  • Hyunyoung Oh;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.191-191
    • /
    • 2023
  • 기후변화 대응을 위한 탄소 중립의 중요성이 대두되는 요즘, 생태계의 가장 큰 메탄 저장소로서 지구의 탄소 순환에 주요한 영향을 미치는 습지에 대한 이해는 필수적이다. 전지구 지면 모델인 Community Land Model(CLM)에 Functionally Assembled Terrestial Ecosystem Simulator(FATES) 외부 모듈을 함께 구동한 지면 생태계 모델 CLM-FATES는 지면 heterogeneity와 다양한 식생 종류를 고려하여 에너지 플럭스, 토양 수문, 생화학적 과정 등을 모의함으로써 탄소 동태 변화를 포함한 장기적 생태계 동태 변화 모의를 가능하게 한다. 본 연구는 CLM-FATES 모델을 미국 캘리포니아주 Mayberry Wetland (US-Myb)와 Twitchell East End Wetland (US-Tw4)에 적용하였다. 모델의 대기 입력 자료로는 FLUXNET-CH4에서 제공하는 에디 공분산 기반 플럭스 관측 자료를 사용하였다. 기존 CLM-FATES 모델은 토양이 장기간 포화 혹은 침수되어 지표 위 혹은 지표면 가까이 발달한 지하수면을 가지고 있는 습지의 수문학적 특성을 잘 반영하지 못해 정밀한 습지 생태계 동태 변화 모의에 한계를 가지고 있다. 본 연구에서는 CLM-FATES를 통한 보다 정확한 습지 생태계 모의를 위해 모델 내 토양 수문 관련 모듈을 수정하여 모델이 습지의 수문학적 특성을 반영할 수 있도록 하였다. 모델 구동 결과 도출한 잠열, 총일차생산량(Gross Primary Production: GPP)과 순생태계생산량(Net Ecosystem Production, NEP) 플럭스, 메탄 플럭스, 엽면적지수(Leaf Area Index; LAI)와 지표수 높이에 대해 관측값 대비 RMSE 및 R2 값을 계산하여 모의 결과의 적절성을 분석하였다. 이러한 모델 개선 경험을 바탕으로 추후 우리나라 습지 사이트에 모델을 적용하여 습지 탄소 동태 예측에 활용할 계획이다.

  • PDF

Development of Risk Society Education Program (RSEP) in Connection with Science Education (과학교육과 연계한 위험사회 교육프로그램 개발)

  • Eun-Ju Lee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.103-132
    • /
    • 2023
  • This study developed a risk society education program for undergraduate students to help them understand the epistemological uncertainty of risk caused by COVID-19. And it was applied to science-related classes of undergraduate students, and the purpose was to examine the degree of understanding and thoughts of undergraduate students about the risk society through science writing. As a result, it was found that the degree of understanding of the risk society was very high in all participating students regardless of their majors in science, engineering, humanities and social sciences. In addition, it was analyzed that the risk society education program helped undergraduate students to resolve the epistemological uncertainty of the risk of COVID-19 and to have an attitude to overcome the the difficult mind due to the COVID-19 distancing. The results of this study suggest that risk society education is necessary for future generations living in an era of risk of climate change and pandemic that exceeds the prediction range of science and technology in science education.