• 제목/요약/키워드: 증식블랑켓

검색결과 11건 처리시간 0.029초

ITER HCCR TBM 헬륨냉각계통 개발을 위한 헬륨공급장치 구축 및 실험계획

  • 이어확;김석권;진형곤;윤재성;조승연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.465-465
    • /
    • 2014
  • 증식블랑켓모듈(TBM, Test Blanket Module)을 개발하여 왔다. 이 두 증식블랑켓모듈은 모두 헬륨냉각을 기반으로 개발 되어왔으며 이에 따라, 헬륨순환기, 헬륨히터 및 헬륨열교환기 등에 대한 기본적인 연구가 수행되었다. 이후 2012년 고체형 증식블랑켓모듈을 ITER TBM 개념으로 주도하기로 결정함에 따라, HCCR (Helium Cooled Ceramic Reflector) TBM의 보조계통인 하나인 헬륨냉각계통(HCS, Helium Cooling System)에 대한 개발이 본격적으로 이루어졌다. 한국원자력연구원에서는 HCCR TBM의 냉각성능을 만족하기 위하여 8 MPa, 1.5 kg/s 및 $300/500^{\circ}C$ (입구/출구 온도)의 운전조건을 갖는 헬륨냉각계통의 설계를 완료하였다. 설계된 헬륨냉각계통은 HCCR TBM에서 회수된 약 $450^{\circ}C$의 헬륨을 열회수기(recuperator)기와 냉각기를 통해 상온으로 냉각시킨 후, 필터를 통해 헬륨을 여과시킨다. 여과된 헬륨은 헬륨순환기에 의해 가압되어 열회수기를 다시 지나 $300^{\circ}C$ 이상으로 가열된다. 가열된 헬륨은 열회수기를 지나지 않는 상온의 헬륨과 혼합되어 최종적으로 HCCR TBM의 입구온도 조건인 $300^{\circ}C$로 맞추어 HCCR TBM에 공급된다. 이러한 열회수기 중심으로 '${\infty}$' 모양의 자가 교차로 설계된 헬륨냉각계통은 고온영역과 저온영역으로 냉각회로를 구분하여 순환기, 필터 및 각종 계측기의 운전온도 환경을 상온으로 유지시킬 수 있어 운전 및 유지보수 관점에서 이점이 있다. HCCR TBM의 헬륨냉각계통 설계 및 핵심 기기를 실증하고, 운전 경험을 쌓기 위하여 헬륨공급장치(HeSS, Helium Supply System)를 헬륨유량기준 1/3 규모(0.5 kg/s)로 구축하였으며, '14년까지 HeSS를 실증규모로 업그레이드 하기 위하여 80기압 환경에서 압축비 1.1, 유량 1.5 kg/s의 성능을 내는 헬륨순환기를 설치할 예정이다. 현재 구축된 1/3 규모 HeSS는 국내 구축된 전자빔 고열부하 시험 장비인 KoHLT-EB (Electron Beam)와 연계되어 HCCR TBM의 일차벽(플라즈마 대향부품)을 검증할 예정이며, 이를 통해 얻어진 열수력 DB는 현재 개발중인 핵융합로 안전해석코드인 GAMMA-FR 검증에 활용될 계획이다.

  • PDF

국제핵융합실험로(ITER) 시험을 위한 한국형 시험증식블랑켓 개념설계 및 성능해석

  • 이동원;진형곤;이어확;윤재성;김석권;박성대;조아라;안무영;조승연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.255-255
    • /
    • 2015
  • 국제핵융합실험로(ITER)의 3대 목표 중 하나는 핵융합로 개발을 위한 삼중수소증식블랑켓 개념을 시험하고 검증하는 것이며, 이를 위해 시험증식블랑켓(TBM, Test Blanket Module) 프로그램을 마련, 각국이 참여할 수 있도록 하고 있다. 한국도 2012년 국가핵융합위원회 결정에 따라, EU, 일본, 중국, 인도와 함께 TBM 프로그램에 참여하고 있으며, 2021년 설치를 목표로 헬륨냉각 고체증식재 개념의 HCCR (Helilum Cooled Ceramic Reflector) TBM을 설계, 개발하고 있다. 한국형 TBM은 총 4개의 서브모듈과 하나의 후벽(Back Manifold, BM) 으로 구성되며, 각 서브모듈은 플라즈마와 대면하는 일차벽(First Wall, FW), 증식재와 증배재, 반사재를 담고 있는 증식영역(Breeding Zong, BZ), 냉각재 매니폴드 및 구조물 역할을 하는 측벽(Side Wall, SW) 등의 기능부품으로 구성되어 있다. 냉각재는 8 MPa, $300-500^{\circ}C$의 고온고압헬륨을 사용하고, Li2SiO4 혹은 Li2TiO4 형태의 Li 세라믹 증식재를 사용하며, 중성자 증배를 위해 Be 증배재 및 흑연 반사재를 사용한다 [1-3]. 2015년 2월 개념설계검토(CDR, Conceptual Design Review)를 위해, TBM-shield를 포함한 TBM-set 설계가 완료되었으며, 열수력, 구조, 지진, 전자기, 복합하중에 대한 평가가 진행되었다. 본 논문에서는 이 중 H/He-phase에 시험될 EM-TBM과 D-T phase에 시험될 INT-TBM에 대한 열수력 성능 결과를 소개하였다[5]. 각각의 열부하 조건은 0.17과 $0.3MW/m^2$이며, 중성자 조사는 D-T phase 에서만 고려되었다. 구조재 및 사용된 기능소재별 온도 요건을 정의하고, 성능해석 결과와 비교하였으며, 이를 통해 모든 온도 요건을 만족함을 최종 확인하였다. 이러한 온도 분포는 열응력 평가를 위해 구조해석 입력자료로 활용되었다.

  • PDF

ITER 블랑켓 시험모듈(TBM)의 액체형 증식재 성능 시험용 루프 설계 및 제작

  • 윤재성;이동원;배영덕;김석권;홍봉근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.281-281
    • /
    • 2010
  • ITER 블랑켓 시험모듈(TBM)의 액체형 증식재 성능 시험용 루프의 설계를 완료하였고 현재시험용 루프를 제작 및 설치중이다. 액체형 증식재 성능 시험용 루프의 핵심 구성 부품인 액체 저장용 탱크, 전자석, EM 펌프들과 이들 장치들의 전원장치 및 제어장치를 제작 완료하였다. 액체형 증식재 성능 시험용 루프 설치를 위한 데크를 제작하였으며, 제작된 실험 데크의 총 지지하중은 10 톤 이상이다. 루프설치대 위에 성능 시험용 루프가 설치되며 루프 설치대는 $3\;m\;{\times}\;2.4\;m$ 의 직사각형으로 제작되었으며, 실험 종료 및 유지 보수 시 액체증식재의 drain을 고려하여 전체 루프는 각도 조절이 가능하도록 제작되었다. 루프내의 유량을 측정하기 위한 유량계, 전자석 자장의 변화에 따른 압력의 변화를 측정하기 위한 차압센서가 전자석의 양단에 설치되며, 시험용 루프에 흐르는 액체금속(PbLi) 및 루프관의 온도를 측정하기 위한 열전대가 설치된다. 루프 설치대를 기울였을 때 루프의 최상부에 액체금속 저장고 및 레벨센서를 설치하여 루프 내에 액체금속이 가득 채워졌는지를 레벨센서로 확인하며 루프 내에 잔존하는 기체가 저장고를 통하여 외부로 배출되게 하였다. 액체형 증식재 성능 시험용 루프 설치 후 실험은 고체 상태의 PbLi를 액체 저장용 탱크에 장착한 후 탱크의 열선의 온도 제어에 의한 PbLi의 용융점 확인, 시험용 루프에서의 전자펌프 성능 평가 등의 시험의 기본적인 실험을 수행한 후 자기장 환경에서 MHD 평가, 증식재의 순도 유지, 구조재의 부식 등의 시험을 수행할 예정이다.

  • PDF

삼중수소 증식 재료 개발을 위한 Li4SiO4 분말합성

  • 유인근;이상진;조승연;안무영;구덕영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.324-324
    • /
    • 2010
  • 핵융합의 고체형 증식(Helium Cooled Solid Breeder : HCSB) 블랑켓(Blanket Module)은 삼중수소 증식을 위해서 Li4SiO4, Li2TiO3, Li2O 및 Li2ZrO3 등의 페블이 고려되고 있다. 이러한 페블을 제조하기 위해서는 먼저 각각의 분말 제조가 선행되어야 한다. 한국의 Test Blanket Module(TBM)은 Li4SiO4 페블을 개발을 개발하여 사용할 예정이고 옵션으로 Li2TiO3 페블을 개발하는 것으로 되어 있다. Li4SiO4 페블을 개발하기 위해서 먼저 분말합성이 필수적이다. Li4SiO4 분말을 합성에 하기 위해서는 Lithium 금속염과 실리카 졸을 용매 및 폴리머 캐리어로서의 두 가지 기능을 하는 에틸렌글리콜에 첨가한 후 가열하여 완전히 용해시킨 후 혼합 용액을 건조시켜 겔형의 전구체를 제조한다. 이를 하소한 후 결정화시켜 Silicate 분말을 얻는데 이때의 건조, 하소 및 결정화 온도의 조건에 따른 분말의 크기 및 특성이 각각 다르다. 즉, 바인더 물질의 비율과 합성온도에 따라 특성이 약간씩 다른 분말을 얻을 수 있었다. 이렇게 얻어진 Silicate 분말은 지르코니아 볼을 이용하여 약 24 시간 동안 볼 밀링 과정을 통해 입도가 작은 미세한 Silicate 분말로 만들었다. 합성된 분말은 여러 가지 시험 및 분석을 통해서 검증되었으며, 불순물 등은 관찰되지 않았다.

  • PDF

삼중수소 증식 재료 및 중성자 반사 재료의 연구개발

  • 유인근;이상진;조승연;안무영;구덕영;윤한기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.279-279
    • /
    • 2010
  • 한국형 헬륨 냉각 고체형 증식(Helium Cooled Solid Breeder : HCSB) 시험 블랑켓(Test Blanket Module : TBM)은 삼중수소 증식을 위해서 $Li_2TiO_3$$Li_4SiO_4$ 페블을 고려하고 있으며, 중성자 반사 재료로는 SiC가 코팅된 흑연 페블을 사용할 예정이다. $Li_2TiO_3$$Li_4SiO_4$ 페블을 제조하기 위해서는 먼저 각각의 분말 제조가 선행되어야 한다. $Li_2TiO_3$ 분말을 합성하기 위해서는 먼저 Lithium 금속염과 Isopropoxide를 용매 및 폴리머 캐리어로서의 두 가지 기능을 하는 에틸렌글리콜에 첨가한 후 가열하여 완전히 용해시킨 후 혼합 용액을 건조시켜 겔형의 전구체를 제조한다. 이를 하소한 후 결정화시켜 Titanate 분말을 얻는데 이때의 건조, 하소 및 결정화 온도의 조건에 따른 분말의 크기 및 특성이 각각 다르다. 즉 하소 온도가 $600^{\circ}C$ 미만이면 열분해된 폴리머로부터 잔유 탄소가 남게 되고, $700^{\circ}C$를 초과하면 결정화가 시작된다. 이렇게 얻어진 Titanate분말은 지르코니아 볼을 이용하여 약 24 시간 동안 볼 밀링 과정을 통해 입도분포가 좁은 미세한 Titanate 분말로 만들었다. $Li_2TiO_3$ 페블은 위의 과정에서 얻어진 미세분말에 바인더를 이용하여 페블화 시킨 후 $1200^{\circ}C$의 전기로에서 최종 소결한 것이다. 중성자 반사 재료인 흑연페블은 강도가 약하기 때문에 표면에 SiC를 수 ${\mu}m$ 코팅해서 사용할 예정이다. 선행실험으로 건식법을 이용하여 SiC 코팅을 실시했으며, 그 결과를 소개할 것이다.

  • PDF

핵 융합로 구축재질용 Stainless Steel 304의 수소 누설거동 실험

  • 이석관;온연길;최민식;이주호;박재웅;김희수;노승정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.511-511
    • /
    • 2012
  • 핵 융합로는 고밀도, 고에너지 플라즈마에 지속적으로 노출되며 고열부하 및 중성자, 플라즈마 이온에 의한 물성변화에 대한 다양한 핵 융합로 구축 재질의 실험데이터가 요구된다. 특히 핵 융합 반응의 핵심연료인 삼중수소의 재질별 누설거동 특성은 삼중수소의 블랑켓에서의 증식율, 열 교환기 및 공급과 회수과정에서의 손실율, 저장, 취급 및 차폐 등의 계산에 활용되므로 핵 융합로의 안전성과 경제성 확보 측면에서 매우 중요하다. 따라서 핵 융합로 구축 재질 선정시 삼중수소의 누설거동 특성은 반드시 고려되어야 한다. 본 연구는 삼중수소 누설거동 특성 해석을 위한 기초실험으로, 수소동위원소를 사용하는 누설거동실험 장치를 설계 제작하여 누설 거동실험을 수행하였다. 누설 가스로는 수소를 사용하였고, 시편은 스테인레스 스틸(SUS-304)을 사용하였으며, 시편의 가열온도는 500, 600, 700, $800^{\circ}C$에서 각각 수소누설거동 실험을 실시하였다. 수소에 대한 SUS-304 재질의 permeability, diffusivity, solubility에 대한 실험 결과를 발표하고자 한다.

  • PDF

CVD에 의한 흑연페블의 SiC 코팅기술 개발

  • 유인근;박이현;안무영;구덕영;조승연
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.231-231
    • /
    • 2012
  • 7개 나라가 참여해서 공동으로 제작하고 있는 국제핵융합실험로(ITER)는 2020년경에 제작 설치가 완료될 예정이다. ITER 장치에는 6개의 시험 블랑켓 모듈(Test Blanket Module : TBM)이 장착될 예정이며, 그 중에서 한국도 1개를 독자적으로 제작해서 설치할 예정이다. 한국형 헬륨 냉각 고체형 증식(Helium Cooled Solid Breeder : HCSB) TBM이며, 한국은 ITER 참여국 중 유일하게 중성자 반사 재료를 채택한 것이 특징이다. 중성자 반사재료로는 지름 1 mm 내외의 흑연 페블에 SiC를 코팅해서 사용할 예정이다. SiC는 고온저방사화 물질로 차세대 핵융합로의 구조 재료로도 개발되고 있는 물질로, 이렇게 하면 흑연의 단점인 기계적 특성 향상뿐만 아니라, 산화나 화재 등에 대한 사고의 부담도 크게 줄일 수 있는 장점이 있다. 흑연위에 SiC를 코팅하는 방법은 여러 가지가 있으며, 그 중에서 비교적 간단한 건식 방법은 RF Sputtering, PECVD 등이 있다. 건식은 코팅방법이 간단하고 비교적 쉬운 편이지만 페블표면에 양질의 SiC 박막을 얻기가 쉽지 않은 단점이 있다. 이들 방법보다 습식법은 코팅이 까다롭지만 양질의 코팅막을 비교적 쉽게 얻을 수 있는 장점이 있다. CVD의 경우 전구체 물질로 여러 가지 물질이 사용될 수 있으며 대표적으로 $SiH_4$, $Si(CH_3)_4$, $CH_3SiCl_3$ 등이 있으며, 캐리어 가스로는 $H_2$가 사용된다. 이렇게 얻어진 SiC 코팅페블은 흑연에 비해 파괴강도도 향상되고 마모 등에 강한 것을 확인할 수 있었다.

  • PDF

RCC-MR 코드에 기반한 ITER 시험증식블랑켓 일차벽 설계 (First Wall Design of ITER Test Blanket Module(TBM) based on RCC-MR Code)

  • 신규인;이동원
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.14-19
    • /
    • 2012
  • The Helium cooled ceramic reflector(HCCR) test blanket module(TBM) has been designed and developed to participate the ITER(International Thermonuclear Experimental Reactor) test blanket program in Korea. The TBM was one of the main objectives for developing ITER for proving the tritium self-sufficiency and the heat transfers to produce the electricity with the breeding blanket concept. Among the TBM components, the first wall(FW) was the most important component in safety since it was directly faced a high level of a heat and fast neutrons from the plasma side and could protect the others components inside TBM. In this paper, the FW has been designed through the thermo-mechanical analysis considering ITER operation conditions. With the developed simple models, the stress limit analysis based on RCC-MR code which is the nuclear power plant design codes in France was evaluated for the allowable design criteria. The results showed that the designed FW model satisfied $1.5S_m$ or $3S_m$ of the allowable stress($S_m$) in RCC-MR code at the maximum stress region in the FW.

ITER 시험블랑켓 모듈(TBM) 일차벽 제작법 개발을 위한 Be/FMS mock-up의 고열부하 시험

  • 이동원;김석권;배영덕;윤재성;정기석;박정용;정양일;이정석;최병권;홍봉근;정용환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.274-274
    • /
    • 2010
  • 한국은 국제핵융합실험로 (ITER) 사업에 참여하고 있으며, 삼중수소 증식을 시험하기 위한 시험 모듈(TBM, Test Blanket Module)로서 HCML (Helium Cooled Molten Lithium) TBM을 설계, 개발하고 있다. 헬륨 및 액체 리튬을 냉각재와 증식재로 사용하는 개념으로, 구조재로서 Ferritic Martensitic (FM) 강이 사용될 예정이다. 특히, HCML TBM의 일차벽은 중성자 및 플라즈마로부터 입사되는 입자들을 차폐하기 위한 Be 차폐체와 FM강으로 구성되어 있으며, 일차벽 제작법 개발을 위해서는 Be과 FM강 간의 접합과 FM강 간의 접합 방법이 개발되어야 한다. FM강 간의 접합은 기존의 연구를 통해 접합 조건이 이미 도출되었고, 고열부하 시험을 통해 검증 완료한 상태이다. 그러나, Be과 FM강 간의 접합은 현재 개발단계에 있다. 본 논문에서는 고려 중인 구조재와 Be 차폐체 사이의 접합법 개발을 위해, 고온등방가압(HIP, Hot Isostatic Pressing) 조건을 도출하고, 운전조건과 유사 혹은 가혹한 조건에서 고열부하를 인가하여, 그 건전성을 평가하는 일련의 과정을 기술하였다. 본 연구에서는 Be과 FM강 간의 접합법 개발 및 검증을 위해 제작된 $80{\times}80{\times}1$ Be/FM강 mock-up을 국내에서 구축된 고열부하 시험 장비인 KoHLT를 활용하여 수행한 고열부하 시험에 대한 것이다. 본 mock-up은 $80{\times}80{\times}10mm(t)$의 Be tile 3개를 동일 크기에 두께가 각각 25mm와 50 mm인 FM강과 스테인레스강에 접합된 것으로, 고열부하 장비에 설치하여 고열부하 시험을 수행하였다. 냉각수의 온도 및 속도는 25 C, 0.15 kg/sec로 유지되었고, 열부하는 $0.5\;MW/m^2$로 유지하였다. 시험 조건에 대한 예비해석을 통해, 가열시의 온도 및 stress, strain 분포를 얻었고, 이를 통해, cycle to failure 값을 도출하였다. 1000 사이클의 가열 실험을 마친후 초음파를 활용한 접합 계면의 결함확인 및 파괴검사를 통한 접합 건전성을 확인하였다. 3가지 접합법 모두 일부 접합면이 이탈되었으며, 향후 보다 건전한 접합방법 개발이 진행되어야 할 것으로 보인다.

  • PDF