• Title/Summary/Keyword: 증분법

Search Result 167, Processing Time 0.024 seconds

A Non-consecutive Cloth Draping Simulation Algorithm using Conjugate Harmonic Functions (켤레조화함수를 이용한 비순차적 의류 주름 모사 알고리즘)

  • Kang Moon Koo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.181-191
    • /
    • 2005
  • This article describes a simplified mathematical model and the relevant numerical algorithm to simulate the draped cloth on virtual human body. The proposed algorithm incorporates an elliptical, or non-consecutive, method to simulate the cloth wrinkles on moving bodies without resorting to the result of the past time-steps of drape simulation. A global-local analysis technique was employed to decompose the drape of cloths into the global deformation and the local wrinkles that will be superposed linearly The global deformation is determined directly by the rotation and the translation of body parts to generate a wrinkle-free yet globally deformed shape of cloth. The local wrinkles are calculated by solving simple elliptical equations based on the orthogonality between conjugate harmonic functions representing the wrinkle amplitude and the direction of wrinkles. The proposed method requires no interpolative time frames even for discontinuous body postures. Standing away from the incremental approach of time integration in conventional methods, the proposed method yields a remarkable reduction of CPU time and an enhanced stability. Also, the transient motion of cloth could be achieved by interpolating between the deformations corresponding to each static posture.

Time-dependent Analysis of Reinforced and Prestressed Concrete Structures Incorporating Creep Recovery Function (크리프 회복 거동을 고려한 철근콘크리트 및 프리스트레스트 콘크리트 부재의 장기거동해석에 관한 연구)

  • Kim, Se-Hoon;Oh, Byung-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.279-288
    • /
    • 1999
  • The creep of concrete structures caused by variable stresses is generally calculated by step-by-step method based on the superposition of creep function. Although most practical application is carried out by this linear assumption. significant deviations between predictions and experiments have been observed when unloading takes place, that is. stress is reduced. This shows that the superposition of creep function does not describe accurately the effect of sustained compressive preload. The main purpose of this study is to propose a creep analysis model which is expressed with both creep function and creep recovery function where increase or decrease of stress is repeated. In these two function method, the creep behavior is modelled by using linear creep law for loading and creep recovery law for unloading. To apply two function method to time analysis of concrete structures, the calculation method of creep strain increment under varying stress is proposed. The calculation results based on the present method correlates very well with test data, but the conventional superposition method exhibits large deviation from test results. This paper provides a more accurate method for the time dependent analysis of concrete structures subjected to varying stress, i.e. increasing or decreasing stress. The present method may be efficiently employed in the revision of future concrete codes.

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Lee, Chang-Ho;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2010
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely cohesive soft soil is applied to the self-propelled miner. Hinged and ball constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, self-propelled miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-${\beta}$ method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

A Study on the Formation Mechanism of Titanium Sponge in the Kroll Process (Kroll법에 의한 타이타늄 스폰지 생성기구에 관한 연구)

  • Jung, Jae-Young;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.54-60
    • /
    • 2017
  • In this study, we investigated the effect of $TiCl_4$ injection time on the Kroll reaction at a given weight ratio of $TiCl_4$ and Mg. The reduction reaction was investigated by measuring the temperature change according to $TiCl_4$ injection time and observing the cross section and appearance of the Ti sponge after the reaction. The temperature increment due to Kroll reaction heat generation was found to be linearly proportional to the $TiCl_4$ feed rate. In the graph of $TiCl_4$ injection time and reduction tank temperature, initial temperature peaks were observed irrespective of the injection conditions. This is interpreted to mean a temporary interruption of reaction due to $MgCl_2$ formation after the initial Kroll reaction. In addition, when the cross section of the sponge was observed, a large amount of spherical Mg particles was observed in $MgCl_2$. We can infer that this is the process of continuously feeding the unreacted Mg surface, so that a continuous Kroll reaction takes place. The sponge appearance showed that the coalescence or growth of the Kroll reacted Ti particles can be controlled by the cooling rate.

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.

Change of early atherosclerotic markers in obese children (비만아에서 조기 동맥경화증 지표들의 변화)

  • Roh, Eui Jung;Yoon, Jung Min;Lim, Jae Woo;Cheon, Eun Jung;Ko, Kyoung Og
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.4
    • /
    • pp.368-374
    • /
    • 2006
  • Purpose : The prevalence of obesity in children is increasing rapidly. Epidemiologic studies suggest that obesity induced atherosclerosis may start in childhood. We investigated whether obese children show early abnormalities of the arterial wall and endothelial dysfunction. Methods : Thirty-eight obese children(14-16 years old of age, male, body mass index $29.40{\pm}3.18kg/m^2$) and forty-five age and sex-matched healthy control children(body mass index $18.43{\pm}1.01kg/m^2$) were enrolled. Their carotid artery intima-media thickness(IMT) and brachial artery flowmediated dilation(FMD) response were measured by high-quality ultrasound system, and compliance, distensibility, stiffness index, incremental elastic modulus and wall stress were calculated by equation. In addition, we looked at the relations between these arterial features and metabolic cardiovascular risk factors. Results : The obese children had significantly increased IMT($0.52{\pm}0.09mm$ vs $0.40{\pm}0.07mm$, P< 0.001) and markedly impaired FMD($7.35{\pm}7.78$ percent vs $20.34{\pm}16.81$ percent, P<0.001) than the healthy controls. But the compliance and distensibility were lower, and the stiffness index, incremental elastic modules and wall stress were higher in the obese group than the control group, but not statistically significantly. Body mass index was highly associated with increased IMT(r=0.612, P<0.001) and reduced FMD(r=-0.414, P<0.001). Conclusion : We showed the deleterious effect of child obesity on both early functional and structural atherosclerotic markers. The ultrasonic findings will be used for screening and follow up markers to identify high-risk patients among obese children.