• Title/Summary/Keyword: 증발성능

Search Result 459, Processing Time 0.025 seconds

Electromagnetic Indirect Induction Fluid Heating System using Series Resonant PWM Inverter and Its Performance Evaluations (직렬공진 PWM인버터를 이용한 전자간절유도가열 열유체 에너지시스템과 그 성능평가)

  • 김용주;김기환;신대철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.48-54
    • /
    • 2002
  • This paper is described the indirect induction heated boiler and induction heated hot air producer using the voltage-fed series resonant high-frequency inverter which can operate in the frequency range from 20 kHz to 50 kHz. A specially designed induction heater is composed of laminated stainless plates, which have many tiny holes and are interconnected by spot welding. This heater is inserted into the ceramic type vessel with external working coil. This working coil is connected to the inverter and turbulence fluid through this induction heater to moving fluid generates in the vessel. The operating performances of this unique appliance in next generation and its effectiveness are evaluated and discussed from a practical point of view.

Experimental Study on Cooling Performance of Internal Heat Exchanger for CO2 Refrigerant System (이산화탄소 냉매 시스템용 내부 열교환기의 냉방성능에 관한 실험적 연구)

  • Kim, Dae-Hoon;Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.587-592
    • /
    • 2008
  • In order to investigate the performance of an internal heat exchanger for $CO_2$ refrigerant system, the experiment was performed. Four kinds of internal heat exchangers(IHX) were used. The effects on the IHX length, the number of tube, the operating condition and the type of IHX were investigated. With increasing of the IHX length, the capacity and efficiency increased. The pressure drop of the low-side was larger compared with that of the high-side. As the temperature of the gas cooler increased, the capacity and efficiency increased linearly. The operation condition of evaporator was suggested as two phase region rather than superheat region. The capacity and efficiency of the micro-channel was larger about 90% and 75% than those of the tube. But the pressure drop of the micro-channel was more larger, compared with that of the tube.

Analysis of Fire Suppression Efficiency for Intermittent Water Spray Pattern by Fire Dynamics Simulator (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.216-220
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively lower than that of larger water droplet and the infiltration of water mist to the fire source is not effective. Contribution of evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist pattern is expected to improve the penetration force of water mist as well as the air expelling capability with the stratified spray characteristics. At this paper, we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis can support the basic concept to the development of the prototype of water mist nozzle.

Characteristics of Temperature Control by Hot-gas Bypass Flow Rate on Industrial Water Cooler (핫가스 바이패스 유량에 따른 산업용 냉각기의 온도제어 특성)

  • Baek, Seung-Moon;Choi, Jun-Hyuk;Byun, Jong-Yeong;Moon, Choon-Geun;Lee, Ho-Saeng;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1129-1136
    • /
    • 2009
  • The paper presents the performance characteristics for a cooling system using EEV. The water cooler was used to reduce thermal deformation and contraction due to high speed of machine tools and the EEV was used for capacity control for water cooler. The apparatus was designed for hot-gas bypass system which a hot-gas can flows from outlet of compressor to the inlet of evaporator. This experiment is the intermediary study for precise temperature control through PID control. The results show that the evaporator pressure increased and refrigeration capacity decreased as the EEV opening step of hot-gas bypass increased. These results can be used as basic data for the design of effective water cooler.

Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships (LNG선박용 BOG 부분재액화 시스템 특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.174-179
    • /
    • 2016
  • To protect the ocean environment, the use of liquefied natural gas (LNG) carriers, bunkering ships, and fueled ships is increasing. Recently, Korean shipbuilders have developed and supplied a partial reliquefaction facility for boil-off-gas (BOG). Despite reasonable insulation, heat leakage in vessel storage tanks causes LNG to be continuously evaporated as BOG. This research analyzed the maximum liquid yield rate for various partial reliquefaction systems (PRS) and considered related factors affecting yields. The results showed a liquid yield of 48.7% from an indirect PRS system (heat exchanges between cold flash gas and compressed natural gas), and 41% from a direct PRS system (BOG is mixed with flash gas and discharged from a liquid-vapor separator). The primary factor affecting liquid yield was heat exchanger effectiveness; the exchanger's efficiency and insulation characteristics directly affect the performance of BOG reliquefaction systems.

A Feasibility Study on the Polymer Solidification of Evaporator Concentrated Wastes (폐액증발기 농축폐액 폴리머고화 타당성 연구)

  • Yang, Ho-Yeon;Kim, Ju-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.297-308
    • /
    • 2007
  • The granulation equipment of concentrated wastes is manufactured for the polymer solidification of concentrated wastes. It uses liquid sodium silicate as a granulating agent for the granulating of dried powder containing boric acid. The granulating agent is sprayed in the form of droplet and mean size of dried granules is $2{\sim}4mm$. The new technology which has been used for the polymer solidification of spent resin in U.S. and certified by Nuclear Regulatory Commission (NRC) is successfully applied to concentrated wastes. This uses in-situ solidification process within drum without mechanical mixing. Maximum loading of waste can be achieved without increasing of waste volume. Polymer waste forms were evaluated with several test such as fire test, compressive strength test, leaching test, immersion test, irradiation test, and thermal cycling test according to standard test procedures.

  • PDF

Study on the Effect of Membrane Module Configuration on Pervaporative Performance through Model Simulation (모델모사를 이용한 막모듈 연결 및 배열이 투과증발 막성능에 끼치는 영향에 관한 연구)

  • Yeom, Choong-Kyun;Yoon, Seok-Bok;Park, You-In
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.294-305
    • /
    • 2008
  • This study was focused on the investigation of the effects of membrane module configuration and the temperature of feed retentate flowing along with module length on membrane performance through model simulation. A simulation model of pervaporative dehydration through membrane module assemble in which a number of unit modules are connected in parallel or in series has been established. In this study, ethanol/water mixture was used as model mixture. Some of permeation parameters in the model were quantified directly from the real dehydration pervaporation of ethanol through a lab-made membrane. By adopting the coefficients determined empirically the simulation model could be of more practical value. The simulation of pervaporation with two basic module configurations, that is, parallel connection and series connection, could present the importance of process parameters such as feed rate, module connection mode, number of stages, and inter-stage heating.

Design of Optimized Multi-Fuzzy Controllers for Air-Conditioning System with Multi-Evaporators (다중 증발기를 갖는 에어컨시스템에 대한 최적화된 Multi-Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • In this paper, we introduce an approach to design multi-fuzzy controllers for the superheat and the low pressure that have an influence on energy efficiency and stabilization of aft conditioning system. Air conditioning system is composed of compressor, condenser several evaporators and several expansion valves. It is quite difficult to control the air conditioning system because the change of the refrigerant condition give an impact on the overall air conditioning system. In order to solve the drawback, we design multi-fuzzy controllers which control simultaneously both three expansion valve and one compressor for the superheat and the low pressure of air conditioning system. The proposed multi fuzzy controllers are given as two kinds of controller types such as a continuous simplified fuzzy inference type and a discrete fuzzy lookup_table type. Here the scaling factors of each fuzzy controller ate efficiently adjusted by veal coding type Genetic Algorithms. The values of performance index of the conventional type are compared with the simulation results of discrete lookup_table type and continuous simplified inference type.

Comparison of membrane distillation with reverse osmosis process for the treatment of anaerobic digestate of livestock wastewater (가축분뇨 혐기 소화액 처리를 위한 막 증발과 역삼투 공정 성능 비교)

  • Kim, Seunghwan;Cho, Jinwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, a pilot-scale (3 ㎥/day) membrane distillation (MD) process was operated to treat digestate produced from anaerobic digestion of livestock wastewater. In order to evaluate the performance and energy cost of MD process, it was compared with the pilot scale (10 ㎥/day) reverse osmosis (RO) process, expected competitive process, under same feed condition. As results, MD process shows stable permeate flux (average 10.1 L/㎡/hr) until 150 hours, whereas permeate flux of RO process was decreased from 5.3 to 1.5 L/㎡/hr within 24 hours. In the case of removal of COD, TN, and TP, MD process shows a high removal rate (98.7, 93.7, and 99% respectively) stably until 150 hours. However, in the case of RO process, removal rate was decreased from 91.6 to 69.5% in COD and from 93.7 to 76.0% in TP during 100 hours of operation. Removal rate of TN in RO process was fluctuated in the range of 34.5-62.9% (average 44.6%) during the operation. As a result of energy cost analysis, MD process using waste heat for heating the feed shows 18% lower cost compare with RO process. Thus, overall efficiency of the MD process is higher then that of the RO process in terms of permeate flux, removal rate of salts, and operating cost (in the case of using waste heat) in treating the anaerobic digestate of livestock wastewater.

Optimum design of the Characteristics of Double Stage Evaporator/Absorber for Large temperature Difference Absorption System (냉수 대온도차 흡수식 냉동기용 2단 증발기/ 흡수기 최적 설계)

  • Park, Chan-Woo;Im, Ick-Tae;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.203-211
    • /
    • 2008
  • The optimal design of two stage evaporation & absorption system which is related to the large temperature difference system was investigated numerically in the absorption refrigeration system. The concentrations at inlet & oulet of absorber are 62.9% and 56.9%, but in two stage absorption system the values are 62.2% and 56.2%. Therefore strong solution & weak solution became diluted than the standard value. The amount of weak solution circulation can be reduced in absorption refrigeration system, and the sensible heat load is more reduced to enhance the COP of system. As UAR is increased, COP becomes larger, and this means the role of top section is more important than bottom section in two stage evaporation & absorption system. But the increase of COP becomes slower at 0.7 of UAR ratio. The performance of Type2 is higher than Type1 in COP with the flow direction of cooling waters. This phenomena is due to the active absorption of vapor -absorption & lower temp. cooling water is more effective. The pressure at bottom section becomes higher & that at top section becomes lower and therefore the circulation rate can be diminished more.

  • PDF