• Title/Summary/Keyword: 증발성능

Search Result 457, Processing Time 0.022 seconds

Performance Analysis of Centrifugal Compressor in Wet Compression (물입자를 분사하는 원심압축기의 성능해석)

  • Kang Jeong-Seek;Cha Bong-Jun;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.237-242
    • /
    • 2005
  • The energy consumed by compressor in gas turbine is equivalent to $30\sim50\%$ of energy produced by turbine and, therefore, research on reducing compression work is important in increasing the efficiency of gas turbine. One of the method to reduce the compression work is to inject small water droplets into the compressor. This method decreases the compression work by decreasing the compressor exit temperature through the evaporation of water. Researches on wet compression, up to now, are focused on thermodynamic analysis of wet compression where the decrease of exit flow temperature and compression work is demonstrated. This paper presents an thermodynamic and aerodynamic analysis of wet compression in centrifugal compressor for microturbine.

  • PDF

Analysis of 1MW Closed OTEC Cycle Using Thermal Effluent and Waste Heat (발전소 온배수를 이용한 1MW급 폐쇄형 해양온도차발전 성능해석)

  • Kim, Hyeon-Ju;Lee, Ho-Saeng;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.470-476
    • /
    • 2010
  • The thermodynamic performance of closed ocean thermal energy conversion (OTEC) cycle with 1 MW gross power was evaluated to obtain the basic data for the optimal design of OTEC. The basic thermodynamic model for OTEC is Rankine cycle and the thermal effluent from power plant was used for the heat source of evaporator. The cycle performance such as efficiency, heat exchanger capacity, etc. was analyzed on the temperature variation of thermal effluent. The saturated pressure of evaporator increased with respect to the increase of thermal effluent temperature, so the cycle efficiency increased and necessary capacity of evaporator and condenser decreased under 1 MW gross power. As the thermal effluent temperature increases about $15^{\circ}C$, the cycle efficiency increased approximately 44%. So, it was revealed that thermal effluent from power plant is important heat source for OTEC plant. Also, if there is an available waste heat, it can be transferred heat to the working fluid form the evaporator through heat exchanger and cycle efficiency will be increased.

A Study of Closed OTEC Power Plants (폐쇄형 해양온도차발전 사이클에 관한 연구)

  • Shin, Sang-Ho;Jung, Dong-Soo;Kim, Chong-Bo;Seo, Tae-Beom;Chun, Won-Gee;Auh, P. Chung-Moo
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.23-33
    • /
    • 1997
  • In this paper, performance of various working fluids is evaluated for the closed Ocean Thermal Energy Conversion(OTEC) power plant operating on Rankine cycle. The evaporator and condenser are modeled via UA and LMTD method while turbine and pump are modeled by specifying isentropic efficiencies. R22, Propane, Propylene, R134a, R125, R143a, R32, R410A and Ammonia are used as working fluids. Results show that newly developed fluids such as R410A and R32 that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. The superheat at the evaporator exit and subcooling at the condenser exit do not affect the performance of the simple OTEC power cycle. Turbine efficiency and heat exchanger size influence greatly the performance of the Rankine cycle. Finally, it was shown that closed OTEC power plants can practically generate electricity when the difference in warm and cold sea water inlet temperatures is greater than $20^{\circ}C$.

  • PDF

A Study of Alginic acid Membrane for the Separation of Water-Alcohol Mixtures (물-알코올 혼합물의 분리를 위한 알긴산막에 관한 연구)

  • 박상우;오재완정봉우김춘영
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.200-208
    • /
    • 1993
  • As a separation membrane for water-ethanol mixtures, alginic acid has been used which is hydrophilic polysaccharide and has excellent bonding capacity with divalent metal ions. Pervaporation characteristics of the alginic acid membrane were examined. The membrane was crosslinked with metal ions for the improvement of mechanical strength and chemical affinity. And its pervaporation characteristics were investigated. The first group(I A) metal complexed membrane cannot be used because of their brittleness and excessive swelling in low concentrations of ethanol solution. But the permeation characteristics of other metal complexed membrane were more improved than that of the alginic acid membrane because of their contraction of the membrane and hydrophilic property of metal ion.

  • PDF

A Study on the Improvement for Cycle Efficiency of Closed-type OTEC (폐쇄형 해양온도차발전 사이클 효율 향상 방안)

  • Lee, Ho-Saeng;Kim, Hyeon-Ju;Jung, Dong-Ho;Moon, Deok-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A study on the improvement for cycle efficiency of closed-type ocean thermal energy conversion (OTEC) was studied to obtain the basic data for the optimal design of cycle. For that, OTEC cycle with a generator, a reheater and a multi-turbine was simulated and analyzed. The basic thermodynamic model for OTEC is Rankine cycle and the surface seawater of $26^{\circ}C$ and deep seawater of $5^{\circ}C$ were used for the heat source of evaporator and condenser, respectively. Ammonia is used as the working fluid. The cycle efficiency increased when generator is added with 0.9 generator effectiveness. When the reheater and multi-turbine are applied in the basic cycle, the cycle efficiency showed 3.14% and the capacity of heat exchanger decreased for same total cycle power. For the OTEC cycle with the generator, the reheater and the multi-turbine showed the highest cycle efficiency and increased the efficiency by more than 6.5% comparing with the basic OTEC cycle.

The Performance and the NOx Emission Characteristics of the Combined Cycle Using Medium-Btu Coal Gas (중발열량 석탄 가스를 사용하는 복합발전 사이클의 성능 및 NOx 배출 특성)

  • Lee, Chan;Yun, Yong-Seong
    • Journal of Energy Engineering
    • /
    • v.9 no.4
    • /
    • pp.295-302
    • /
    • 2000
  • 증발열량 석탄가스 연료를 사용하는 석탄가스와 복합 발전 플랜트의 성능 및 NOx 배출량을 동시에 예측하기 위한 모사 방법을 제시하였다. 본 방법은 복합 사이클의 열역학적 해석 기법을 토대로, 석탄가스화 복합발전 플랜트의 시스템 연계 및 석탄가스 연소에 의한 탈설계점 효과를 예측하는 모델들을 포함하고 있다. 본 방법에 의한 전산 모사 결과와 천연가스를 사용하는 복합발전소의 실제 시험 결과를 비교함으로써, 본 방법의 예측정확도를 검증하였다. 본 모사 방법을 이용하여, 서로 다른 4가지 석탄가스 연료에 대해, 공기 분리장치와의 다양한 연계 설계 조건에 따른 석탄가스화 복합발전 플랜트의 전체 성능, 운전 안전성 및 NOx 배출 특성들을 비교, 검토하였다.

  • PDF

Effects of Individual Components on the System Performance in a Desiccant Cooling System (제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향)

  • Chang, Young-Soo;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.

Study of Ethane Performance at Two-Stage Cascade Vapor Compression System (에탄을 사용한 2원 냉동 시스템의 성능 평가)

  • Rahadiyan, Lubi;Kim, Y.G.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2006
  • 세계적인 환경 보호 정책에 따라 할로겐화탄소 냉매를 대체할 환경 친화적인 초저온 냉매의 개발과 연구가 활발히 진행되고 있다. 일반적으로 캐스캐이드 2원 냉동 시스템에서 아직까지 할로겐화탄소 냉매가 널리 사용되고 있다. 탄화수소 화합물의 한 종류인 에탄은 낮은 지구 온난화 지수와 낮은 오존층 파괴지수를 가진 친 환경적인 자연 냉매이다. 본 연구는 지구 온난화 지수가 높은 R-23 냉매와 비교하여 캐스캐이드 2원 냉동 시스템에서 에탄의 성능 시험을 목적으로 수행 하였다. 1원측에는 R-22를 사용하였으며, 증발 온도에 따른 성능은 R-23 보다 에탄(R-170)이 더 높게 나타났다.

  • PDF

Performance of A Fresh Water Generator Applied Plate Heat Exchangers and Flow in the Channel (판형열교환기를 적용한 청수제조장치의 성능 및 채널내 유동)

  • Jin, Z.H.;Ji, M.K.;Lee, K.S.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.5-10
    • /
    • 2009
  • 본 연구에서는 판형열교환기를 적용한 청수제조장치의 성능에 대하여 연구를 수행하였다. 판형열교환기는 자체의 높은 열전달 성능과 컴펙트한 장점으로 하여 산업에서 점차 널리 사용되고 있다. 또한 사용, 유지보수가 다른 종류의 열교환기에 비하여 편리하여 유연성 있게 사용할 수 있다. 본 실험에서는 세브론 각도가 60도인 전열판을 사용하였으며 이젝터의 작동으로 열교환기를 장착하고 있는 탱크내부에 진공압력을 유지함으로서 내부유체가 $51^{\circ}C{\sim}57^{\circ}C$에서 증발현상이 발생하는 것을 확인하였다. 또한 수치해석적 방법을 통하여 복잡하며 좁은 세브론전열판으로 이루어진 유로내의 유동특성을 파악할 수 있었다.

  • PDF

Comparison of Performances of Forward Osmosis and Membrane Distillation Processes for Shale Gas Plant Water Treatment (셰일가스 플랜트 용수 처리를 위한 정삼투(FO)와 막증발(MD) 공정의 성능 비교)

  • Koo, Jaewuk;Lee, Sangho;Shin, Yonghyun;Yun, Taekgeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • As non-conventional oil resources such as shale gas have been widely developed, proper treatment of flowback and produced water is becoming important. However, application of conventional water treatment techniques is limited due to high concentration of pollutants such as oil and grease, organics, harmful chemicals, and inorganic ions. In this study, we examined the feasibility of using forward osmosis (FO) and air gap membrane distillation (AGMD) as novel treatment options for shale gas wastewater. Laboratory-scale FO and MD devices were fabricated and used for the experiments. Results showed that FO could be used to treat the synthetic wastewater. Using 5 M NaCl as the draw solution, the flux was approximately $6L/m^2-hr$ during the treatment of low range wastewater (TDS: 66,000 mg/L). Nevertheless, AGMD was more effective to treat high range wastewater (Total Dissolved Solid: 260,000 mg/L) than FO.