본 연구의 목적은 위성영상 기반의 SEBAL(Surface Energy Balance Algorithm for Land) 모형과 SWAT(Soil and Water Assessment Tool) 수문모형을 용담댐 유역($922.3km^2$)에 적용하여 증발산량을 산정하고 모형 간 공간 증발산량의 비교를 통해 각 모형의 적용성을 평가하는데 있다. 이를 위해 SEBAL모형의 입력자료로 Terra MODIS(Moderate Resolution Imaging Spectrometer) Product 중 Normalized Distribution Vegetation Index(NDVI), Albedo 영상을 2012년부터 2013년까지 월단위로 구축하고, 일단위의 Land Surface Temperature(LST) 영상을 구축하였다. 지형자료로는 Digital Elevation Model(DEM)과 Land use를 구축하였으며 SEBAL 모형의 구동을 위한 위성영상 및 지형자료는 500 m의 공간해상도로 재구축하였다. SWAT 모형의 모의를 위해 기상 및 유량 자료를 2000년부터 2013년까지 일단위로 구축하였고, DEM, Land use, 토양도의 지형자료를 30 m의 공간해상도로 구축하였다. SWAT 모형의 유출 검보정 후 수위관측소 지점에서 평균 $R^2$를 산정한 결과 도치(0.80), 동향(0.72), 석정(0.64), 주천(0.80), 천천(0.80), 용담댐(0.72)로 높은 상관성을 나타냈으며, 유출 검보정 후 SWAT 모형의 증발산량 모의 결과를 바탕으로 SEBAL 모형과의 공간 증발산량을 비교하였다. 두 모형의 증발산량은 SEBAL 모형의 경우 지형에 따라 SWAT 모형은 토양 특성에 따라 분포하는 경향이 다르게 나타났다. SEBAL 모형은 주로 저지대에서 증발산량이 높게 산정되며 고지대로 갈수록 감소하여 증발산량이 지형의 고저차에 따라 분포하는 모습을 보였다. SWAT 모형은 토양 특성에 따라 증발산량이 분포하며 유역 내에서 뚜렷한 차이를 나타내지는 않았다. 월별 총 증발산량은 SWAT 모형의 경우 7~8월에 약 90 mm/mon로 가장 높게 나타나고 1~2월은 0 mm/mon로 계절별 변화폭이 컸으나, SEBAL 모형의 경우 5~6월에 증발산량이 약 60 mm/mon로 가장 높게 나타났고 계절별 변화 폭이 SWAT 모형에 비해 적은 모습을 보였다. 이는 위성영상을 기반으로 하는 SEBAL 모형의 특성상 장마 기간에 해당하는 7~8월은 구름으로 인해 일사량이 적게 계산되고, 그 결과 5~6월에 비해 증발산량이 작게 산정되는 것으로 판단된다.
증발산은 유출량과 같은 다른 수문순환 요소들에 비해 가장 만족스럽지 못하게 설명되는 부분이다. 왜냐하면 증발산은 직접 측정 할 수 있는 것이 아니라 물 수지 등과 같은 간접적인 방법을 통해 추정되기 때문이다. 대부분의 증발산량 산정 모형들은 너무나 많은 종류의 기상자료를 입력자료로 요구하기 때문에 현실적으로 수문학적 모형에 적용되기는 어려운 실정이다. 이에 대해 본 연구에서는 준분포 수문모형인 SLURP 모형을 이용하여 토지피복변화에 따른 증발산량의 변화를 분석하였다. SLURP 모형은 유역 내에서의 증발산량을 산정하기 위해 기상요소뿐만 아니라 토양습윤량의 변화를 고려할 수 있으며 토지피복변화를 반영할 수 있다. 대상유역으로는 우리나라의 5대강 유역을 대상으로 하였으며, SLURP 모형에 탑재되어 있는 Morton CRAE (Complementary Relationship Areal Evapotranpiration) 모형을 이용하여 토지피복별 증발산량을 산정하였다. 5대강유역을 대상으로 토지피복변화분석 및 그에 따른 증발산량 변화를 모의하여 증발 및 증산량의 변화를 확인하였다.
수문기상인자 중 하나인 증발산량은 수자원 계획 및 관리 시 고려되며, 특히 물수지 모형 등의 입력자료로 활용된다. 우리나라를 포함한 각국 기상청 및 국제기구에서는 직접 관측이 아닌 FAO56 Penman-Monteith(PM)을 통해 증발산량을 산출하고 있다. FAO56 PM 방법은 복사(radiation), 대기온도(air temperature), 습도(humidity), 풍속(wind speed) 등의 기상인자로부터 기준증발산량(reference evapotransipiration)을 추정하며, 상대적으로 높은 정확성을 보여준다. 그러나 FAO56 PM 방법은 많은 기상인자를 요구하므로 미계측 유역을 포함한 일부지역에 대한 증발산량 자료 구축이 어려운 실정이다. 또한, 기준증발산량의 특성이 시간에 따라 변화하므로 비정상성(nonstationary)을 고려한 분석이 요구된다. 본 연구에서는 온도인자 기반의 대체모형(surrogate model)을 개발하여 기준증발산량의 비정상성을 고려하고자 한다. 한강유역에 위치한 관측소를 대상으로 모형을 개발하였으며, 시간에 따라 변동하는 기준증발산량의 특성을 고려하기 위해 Bayesian 추론기법을 통해 매개변수를 시간에 따라 추정하였다. 또한, 본 연구에서는 대체모형으로 산정된 증발산량을 활용해 가뭄지수인 EDDI(evaporative demand drought index)를 제시하였다. 가뭄 모니터링 및 조기 경보 안내를 위해 개발된 EDDI를 활용하여 기존 가뭄보다 빠르게 진행되는 초단기 가뭄(flash drought)를 평가하였다. 본 연구에서 개발된 모형은 미계측 지역에서도 적용이 가능하므로 수자원분야에서 활용성이 높을 것으로 사료된다.
수자원 계획 및 관리 시 증발산량의 정량적 분석은 필수적으로 고려되는 사항 중 하나이다. 일단위 이하의 잠재증발산량 산정은 세계식량기구(FAO)가 Penman-Monteith 방법을 기반으로 개발한 FAO56 PM 방법을 주로 활용하며, 이는 다른 방법에 비하여 높은 정확성과 적용성이 뛰어나다. 그러나 FAO56 PM 방법의 입력 매개변수는 다양한 기상자료이며, 장기간의 신뢰성 높은 자료를 구축하는 것은 어려운 실정이다. 이에 본 연구에서는 증발산량 공식인 Hargreaves 공식을 활용하여 FAO56 PM 방법으로 산정된 잠재증발산량과 기온차 사이의 시계열 관계를 재구성한 회귀분석 기법을 개발하였다. 개발된 모형에 유역면적을 적용하여 유역면적별 잠재증발산량을 산정하였으며, 이를 기존의 잠재증발산량과의 비교를 통해 모형의 적합성을 평가하였다. 결과적으로, 복잡한 잠재증발산량식을 단순한 대체모형(surrogate model)으로 제시함으로써 효율적인 증발산량 정량적 평가와 제한적인 기상자료 조건에 보편적 활용이 가능하다. 향후 연구에서는 회귀분석방법에 Bayesian 추론기법을 활용하여 구성함으로 잠재증발산량의 불확실성을 정량적으로 표현하고자 한다.
증발산량을 산정하는 것은 자연현상과 인문현상을 이해하는 것의 기초가 된다. 이에, 최근 증발산량을 추정하는 많은 연구가 진행되고 있는 가운데 원격탐사 기법을 이용하는 것이 효과적인 것으로 알려지고 있다. 본 연구에서 소개할 SEBAL (Surface Energy Balance Algorithm for Land) (Bastiaanssen, 1995) 모형은 Landsat이나 NOAA 또는 MODIS 같은 원격탐사 위성으로부터 획득한 디지털 이미지 데이터(위성영상)를 이용하여, 지표에서 일어나는 증발산과 기타의 에너지 교환을 계산하는 이미지-프로세싱 모델이다. 우리나라 대상 유역에 위성영상을 사용하여 증발산량을 추정하는 SEBAL 모형의 적용 가능성을 검토하여, 유역 내 증발산량 분포의 시공간적 특성을 분석하고자 하였다. 연구 대상 지역은 유역 면적 약 6661.1km2의 충주댐 유역으로, Terra MODIS 위성영상을 이용하였다. SEBAL 증발산량의 평가를 위해 Penman-Monteith 공식에 의해 계산된 증발산량을 이용하여 비교하였으며, 그 결과 오차가 허용 가능한 10% 이내로 나타났다.
본 연구에서 소개할 SEBAL (Surface Energy Balance Algorithm for Land) (Bastiaanssen, 1995) 모형은 Landsat이나 NOAA 또는 MODIS 같은 원격탐사 위성으로부터 획득한 디지털 이미지 데이터(위성영상)를 이용하여, 지표에서 일어나는 증발산과 기타의 에너지 교환을 계산하는 이미지-프로세싱 모델이다. SEBAL 모형은 1995년 Bastiaanssen에 의해 처음 제안되었고, 미국의 Idaho 주립대학과 Idaho Department of Water Resources에서 NASA와 기업의 지원을 받아 활발히 연구 되었으며, 25개의 sub model들을 이용하여 지표의 증발산량과 기타 여러 에너지 교환을 계산한다. 여기서, 열적외선 방사, 표시 및 근적외선 측정은 Landsat 또는 기타 여러 위성영상을 통해 얻을 수 있으며, SEBAL 모형은 이러한 자료를 활용한다. 모형에서의 증발산량(ET)은 에너지 균형원리를 통해 pixel-by-pixel을 기준으로 계산되며, 본 연구에서 SEBAL 모형은 한강 유역 내의 경안천 유역 증발산량 map 생성을 위해 6개년도 지점 Landsat 위성영상을 이용하어 추정되었다. 연구의 목적은 SEBAL 모형을 통해 생성 된 30m 해상도의 공간 증발산량 map의 활용성 평가와 검증이며, 검증을 위해 FAO Penman-Monteith 공식을 이용하여 추정된 증발산량 값을 이용하였다. 그 결과, 오차가 2.7% 이내로 나타났다.
설마천 및 청미천 시험유역에서 측정된 증발산량은 강수량 대비 약 20%이상으로 유출해석에 있어 큰 부분을 차지하고 있다. 시험유역 이외의 유역에서는 증발산 측정자료 확보가 어려워 이와 관련된 연구는 측정자료의 확보가 가능한 지역 혹은 기후변화자료를 이용한 연구가 주를 이루고 있다. 특히, 전국을 대상으로 하는 장기유출해석에 있어 유출량 자료를 활용하여 증발산량까지 추정하는 것에는 한계가 있다. 따라서, 본 연구에서는 이에 대한 대안으로 하천의 유출량과 WHAT모형을 이용하여 계산된 기저유출량을 동시에 고려하여 증발산량의 예측능력을 향상할 수 있는 방안을 제시하였다. 유출해석모형으로는 전국유역조사에서 활용되고 있을 뿐만 아니라, 증발산량 계산을 위하여 다양한 기법의 활용이 가능한 K-BASIN(PRMS)모형을 활용하였고, 매개변수 최적화를 위하여 하천유량뿐만아니라 기저유출량을 대상으로 Monte-Carlo 시뮬레이션을 수행하였다. 용담댐 시험유역에 적용하여 각 샘플의 하천유량과 기저유출량에 대하여 NSE 및 Pbias를 검토한 결과, 유출량에 대하여 NSE가 최고(0.9이상)인 샘플의 경우 관측된 증발산량과 상당한 차이를 보였으나, 유출량과 기저유출에 대하여 NSE가 최고(유출에 대한 NSE가 0.8, 기저유출량에 대한 NSE가 0.6)인 샘플의 경우에는 관측된 증발산량의 패턴을 유사하게 모의하였다. 추후 본 연구에서 제시된 기법의 타수계 적용 등의 추가적 검증을 통하여 장기유출해석시 증발산량의 예측정확도를 향상시킬 수 있을 것으로 판단된다.
유역 스케일의 실제 증발산량을 산정하는 대표적인 방법으로 관측 강우량과 유출량의 관계로부터 증발산량을 간접적으로 추정하는 물수지(water balance)법, 증발력과 토양수분량의 변화량 (soil moisture accounting)을 고려한 유역 수문모델링을 이용하는 방법, 잠재 증발산량과 실제 증발산량간 보완관계식(complementary relationship)을 이용하는 방법 등이 있다. 물수지법은 관측치를 기반으로 한다는 점에서 신뢰도가 높다고 할 수 있으나, 기본적으로 유역 저류량의 변화를 무시하기 때문에 연 단위와 같이 긴 시간 스케일에 적용 가능하고 작은 시간 스케일에는 적용성이 떨어진다. 유역 수문모델링을 이용하는 방법은 기상, 토양 및 식물 조건을 모두 고려하는 방법으로 유역의 불균질성을 반영할 수 있고 일 단위 등의 비교적 작은 시간 스케일에 대해서도 증발산량을 산정할 수 있는 장점이 있으나, 수많은 입력자료가 필요하며 간접적인 추정 방식이기 때문에 모형의 정확한 검증과 상당한 숙련도가 뒷받침되어야 한다. 잠재 증발산량과 실제 증발산량간 보완관계식을 이용하는 방법은 토양이나 식물 등의 지표면 조건에 대한 정보를 필요로 하지 않으며 단지 기상자료만을 이용하는 방법으로 적용하기 쉽다는 장점이 있으나 잠재 및 실제 증발산량간의 보완피드벡 매카니즘이 존재한다는 가정이 수반되어 있어 적용시 이를 입증해야 하는 어려움이 있다. 이 처럼 각기 장단점을 가진 여러 방법으로 증발산량을 산정하고 있지만, 각 방법 간의 연결고리를 맺는 연구는 심도 있게 수행되지 못하고 있다. 따라서 본 연구에서는 상기 언급한 증발산량 산정 방법 중 보완관계식을 이용하는 방법과 유역수문모형에 의한 방법 간의 연관성을 평가하고자 하였으며, 이를 위해 충주댐 상류유역에 대해서 SWAT-K에 의한 증발산량 모의치가 보완관계식을 따르는 지에 대해 고찰하였다. 모의기간동안 계산된 잠재 및 실제 증발산량을 습윤지수(humidity index)에 따라 함께 도시해본 결과, 연 단위의 경우에는 건조할수록 잠재 증발산량은 점차 커지고 실제 증발산량은 작아지는 것으로 나타나 보완관계가 성립하였고, 월 단위 경우에는 강우에 비해서 비교적 증발산량이 큰 5, 6월에 가장 명확한 관계가 보여 늦은 봄과 초여름에 보완적 관계가 뚜렷하게 발생하는 반면에 동절기에는 보완관계가 성립하지 않는 것으로 나타나는 등 분석 단위기간별로 보완관계의 성립여부를 판별할 수 있었다.
본 연구에서는 잠재증발산량과 실제증발산량 간의 보완관계식을 이용한 대표적인 증발산량 산정모형인 Brutsaert and Stricker (1979)의 AA 모형과 Morton (1983)의 CRAE 모형의 적용성을 평가하였다. 이를 위해서 두 모형을 복하천 중상류 유역에 적용하여 유역평균 실제증발산량을 산정하고, 유역 물수지 결과와의 비교를 수행하였다. 연구 대상유역은 양질의 하천유량 자료 확보 기간이 짧고, 하천유량 자료 또한 인위적 물이용, 배출로 인해 교란되었기에 강수량, 유출량 등의 관측치 기반의 유역 물수지 결과 보다는 검보정이 잘된 유역수문모형 SWAT-K로 모의한 실제증발산량과의 비교를 통하여 AA 모형과 CRAE 모형으로 산정한 실제증발산량의 적정성을 평가하였다. AA 모형과 CRAE 모형의 의한 실제증발산량 모두 식생성장기에 과다하게 산정되는 경향을 나타내었고, 특히 AA 모형은 건조기간동안 실제증발산량이 과소하게 산정되었다. AA 모형과 CRAE 모형의 정도를 높이기 위해서 매개변수 보정을 수행한 결과, AA 모형의 경우는 건조기간 동안의 적합성을 높이기 위해서 이류항을 추가로 고려하고 Brutsaert and Stricker (1979)의 제안 값 ${\alpha}=1.26$ 보다는 작은 ${\alpha}=1.08$을 사용하였을 때, 그리고 CRAE 모형의 경우에는 Morton(1983)이 제안한 값 $b_1=14Wm^{-2}$, $b_2=1.12$ 보다는 각각 다소 크고 작은 값인$b_1=16Wm^{-2}$, $b_2=1.04$를 사용하였을 때에 연단위, 월단위, 그리고 월별 모두 가장 양호한 실제증발산량 값이 산정되었다.
본 연구에서는 Terra MODIS 위성영상과 Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) 모형을 이용하여 2012년부터 2017년까지 한반도 전국의 증발산량을 산정하고 플럭스 타워 실측 증발산량과 비교하였다. METRIC은 전 세계에 널리 적용된 바 있는 에너지 수지 기반의 Surface Energy Balance Algorithm for Land (SEBAL) 모형의 개념과 기술을 기반으로 현열(Sensible Heat Flux) 추정 모듈을 개선한 모형이다. 본 연구에서 METRIC 모형은 기존 C#으로 개발되어 있던 SEBAL 코드에서 현열 추정 모듈을 수정하였고 연산 속도 개선을 위해 Python으로 재작성하였다. METRIC 모형의 위성 자료로 Terra MODIS 위성의 MOD13A2(16day, 1km) NDVI, MOD11A1(Daily, 1km) Land Surface Temperature (LST) 및 MCD43A3(Daily, 500m) Albedo를 구축하였으며 500m 공간해상도의 Albedo는 1000m 해상도로 resample하여 활용하였다. 기상자료는 기상청 기상관측소의 풍속, 풍속측정높이, 습도, 10분 간격 이슬점 온도, 일사량 자료를 위성 자료와 같은 공간해상도로 내삽(Interpolation)하여 구축하였다. 모형결과 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측 자료와의 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error) relative RMSE (RMSE%), Nash-Sutcliffe efficiency (NSE) 및 IOA(Index of Agreement)를 산정하고, 기존 SEBAL 모형 결과와의 비교를 통해 본 모형의 개선점을 보이고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.