• Title/Summary/Keyword: 중희토류

Search Result 189, Processing Time 0.03 seconds

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

Properties and Provenance of Loess-paleosol Sequence at the Daebo Granite Area of Buan, Jeonbuk Province, South Korea (전북 부안 화강암지역 뢰스-고토양 연속층의 퇴적물 특성과 기원지)

  • Park, Chung-Sun;Hwang, Sang-Ill;Yoon, Soon-Ock
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.898-913
    • /
    • 2007
  • We examined soil properties and provenance of loess-paleosol sequences at the Daebo Granite area of Buan, Jeonbuk Province, South Korea. The section consists of the surface layer, Layer 1(paleosol), Layer 2(loess), Layer 3(paleosol), Layer 4(loess), and Layer 5(paleosol), from top to bottom and thickness of the exposed section is approximately 280cm. The magnetic susceptibility values show the distinct variations between the loess- and the paleosol layer. Even though pH, ORP, water content, and soil hardness do not display the obvious differences in the section, the organic content indicates the variation similar to those of the magnetic susceptibility. In the respect of the soil colors measured under 3 conditions, although the variations of the wet soil color exceedingly reflect the difference of the layers, these variations are obscure in some points in the section due to the characteristics of the Munsell color system. Based on the geomorphological properties, sedimentary structure, the difference of the major element composition and the condrite-normalized rare earth element(REE) patterns showing the clear difference from the adjacent bedrocks and stream sediments and the similarity to those of the Chinese Loess Plateau, it is suggested that the section was formed by the material originated from the Chinese Loess Plateau and peripheral areas. However, because the material experienced the alteration after sedimentation under the environment of the sediment area, it has the properties different from the material in the provenance areas. This phenomenon may result in the climatic condition of Korea, especially in precipitation.

Material Characteristics and Archaeological Scientific Implication of the Bronze Age Potteries from the Cheonan-Asan Area, Korea (천안-아산 지역 청동기시대 무문토기의 재료학적 특성과 고고과학적 의미)

  • Lee, Chan Hee;Cho, Seon Yeong;Eo, Eon Il;Kim, Ran Hee
    • Journal of Conservation Science
    • /
    • v.31 no.1
    • /
    • pp.47-64
    • /
    • 2015
  • The excavated potteries and raw clays of the Bronze Age from the archaeological sites in the Cheonan-Asan area were studied on material scientific characteristics and homogeneity. Under the microscope, grainsize of the tempers in the potteries were distributed from less than 1mm to 10mm. Microtexture of the potteries showed various shapes and sizes of pores. In addition to the main minerals such as quartz, feldspar, mica, hornblende, chlorite and talc were found from the X-ray diffraction analysis of potteries, while talc was not found in the raw clay. Therefore, it was considered as an artificially added mineral. Firing temperature of the potteries, which did not contain chlorite, are assumed that they were baked below $850^{\circ}C$. On the other hand, the potteries which had mica and talc, are assumed that they were fired below $900^{\circ}C$. The geochemical characteristics of the potteries and raw clays showed very similar patterns, that means the potteries were produced by using the raw clay sources from each site.

Studies on the Sorption Behavior of Some Metal Ions using XAD-16-Chromotropic Acid Chelating Resin (XAD-16-Chromotropic Acid 킬레이트 수지를 이용한 몇 가지 금속이온의 흡착거동에 관한 연구)

  • Lee, Won;Kim, Mi-Kyoung;Kim, In-Whan;Kim, Jun-Yong;Kim, Jung-Sook
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.454-463
    • /
    • 2004
  • The sorption behavior of some metal ions on XAD-16-CTA chelating resin was investigated by batch method. The sorption of chelating resin was highly selective for Hf(IV), Zr(IV) and Th(IV) at pH 3.0 ~ 6.0 and the maximum sorption capacity of Zr(IV) ion was 0.81 mmol/g. It was successfully applied to the separation of several rare metal ions from mixed metal solutions by using CDTA, EDTA, NTA and $NH_4F$ as masking agent. The elution order of metal ions obtained from breakthrough capacity and the overall capacity at pH 4.0 was Zr(IV)>Th(IV)>Hf(IV)>U(VI)>Cu(II)>In(III)>Pb(II). Desorption characteristics for metal ions was investigated with desorption agents such as HCl, $HNO_3$, $HClO_4$. 2 M HCl showed high desorption efficiency. Th(IV) ion can be successfully separated from mixed metal ions by using XAD-16-CTA cheating resin.

Volcanic stratigraphy and petrology of Cretaceous volcanic rocks in the eastern part of the Euiseong Basin (의성분지 동부에 분포하는 백악기 화산암류의 화산층서와 암석학적 연구)

  • 정종옥;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.238-253
    • /
    • 2000
  • In the eastern part of the Euiseong Basin acidic~intermediate volcanic rocks widely distribute on the Cretaceous sedimentary basement. Coeval granitic rocks and dyke rocks intruded into the volcanic rocks. Volcanic stratigraphy of study area are andesite lava, dacitic lapilli tuff, dacitic flow-banded lava, rhyolitic bedded tuff, rhyolitic massive tuff, dacitic massive lava, rhyolitlc welded tuff occur from the lower to the upper strata. $SiO_2$ content of the volcanic rocks range from 51 to 74 wt.%. With the increase of $SiO_2$, the contents of $TiO_2$, $Al_2$$O_3$, MgO, FeOT MnO, CaO, $P_2$$O_{5}$ decrease but those of $K_2$O increase. The contents of $Na_2$O show dispersive variation. This trend is quite sim-ilar to the major oxide variation in the volcanic rocks from the Yucheon sub-basin. The geochemical natures indicate that the volcanic rocks in the study area are discriminated to the island-arc type high K to medium K calc-alkaline rocks. The compositional variation of the volcanic rocks can be explained by the plagioclase fractionation of the volcanic magmas originated from similar source materials. The volcanic stratigraphy seems to have formed by at least two eruptive sequences of andesitic to rhyolitic and dacitic to rhyolitic magmas which underwent crystallization differentiation.

  • PDF

REE(rare earth element) contents for the Korean ginsengs from three different soils (3 토양에서 채취된 고려 인삼의 희토류 원소 함량)

  • Song, Suck-Hwan;Min, Ell-Sik;Chan, Song-Chae
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.357-381
    • /
    • 2008
  • REEs of ginsengs(2, 3, 4 years) from the granite, phyllite and shale areas, Keumsan, are analysed and compared with the their soils. In the weathered soils, high element contents are shown in the LREE of the granite and in the HREE of the phyllite. The granite dominantly show positive correlation relationships. In the field soils, the phyllite are high while the granite are low. Relationships of the contents and correlation relationships can be explained with mineral assemblages and contents within soils, and their solubilities. In the host rocks, high contents are found in the LREE of the granite and HREE of the phyllite. The rocks dominantly show positive relationships. In the ginseng, high contents are shown in the 2 year for the shale and granite, and the 4 year for the phyllite. Element pairs mainly show positive relationships. Comparing of the same ages, the granite are mainly high. In the ratios between the soils and the ginsengs, differences of the several hundred to ten times are found, but dominantly, of the several hundred times in the shale and phyllite, and of the several ten times in the granite. The differences are big in the 3 year, and small in all REE of the 2 year from the shale and granite. while, in the phyllite, big in the LREE of the 2 year and HREE of the 3 year. Based on the absorption of the leachate by the ginsengs within soils, contents and correlation relationships of the ginsengs from the different soils can be explained with mineral assemblages, solubilities of the constitutional minerals and phyio-chemical affects influenced on the solubility. Of the three different soils, the ginsengs of the granites are chemically more similar to their soils.

Geochemistry, Secondary Contamination and Heavy Metal Behavior of Soils and Sediments in the Tohyun Mine Creek, Korea (토현광산 수계에 분포하는 토양과 퇴적물의 지구화학적 특성, 이차적 오염 및 중금속의 거동)

  • 이찬희;이현구;윤경무
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.39-53
    • /
    • 2001
  • Environmental pollution of the Tohyun mine creek area was investigated on the basis of geology, mineralogy and geochemistry. In soils and sediments of the mine area, ${Al_2}{O_3}/{Na_2O}$ and ${K_2}O/{Na_2}O$ ratios are partly negative correlation against ${SiO_2}/{Al_2}{O_3}$, respectively. Geochemical characteristics of some trace and rare earth elements such as V/Ni, Ni/Co, La/Ce, Th/Yb, Th/U, La/Th, ${La_N}/{Yb_N}$, La/Sc and Sc/Th are revealed a narrow range and homogeneous compositions may be explained by simple source lithology. These results suggest that sediments source of the host shale around the mine area could be originated by basic to intermediate igneous rocks. Mineral compositions of soil and sediment near the mine area were partly variable mineralogy, which are composed of quartz, mica, feldspar, chlorite, clay minerals and some pyrite. Soils and sediments with highly concentrated heavy minerals, gravity separated mineralogy, are composed of some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, goethite and various kinds of hydroxide minerals on the polished sections. As normalized by bed rock composition, average enrichment indices of major elements in sediments, precipitates, farmland soils and paddy soils are 1.0, 1.7, 0.9 and 0.8, respectively. Maximum concentration of environmental toxic elements in the mine creek are detected with Ag = 186 ppm, As = 17,100 ppm, Bi = ]27 ppm, Cd = 77 ppm, Cu = 12,299 ppm, Pb = 8,897 ppm, Sb = 1,350 ppm, W = 599 ppm and Zn = 12,250 ppm, which are increasing with total FeO increasing, and extremely high concentrations of surface sediments and precipitates near the waste rock dump. These toxic elements (As, Bi, Cd, Cu, Pb, Sb, W and Zn) of the samples, normalizing by host rock concentration, revealed that average enrichment index is 106.0 for sediments, 279.6 for precipitates, 3.5 for farmland soils and 1.6 for paddy soils. However, on the basis of EPA values, enrichment indices of all the samples are 40.7, 121.4, 1.3 and 0.6, respectively.

  • PDF

Petrology of the Syenites in Sancheong, Korea (경남 산청 지역의 섬장암에 관한 암석학적 연구)

  • Ok, Eun-Young;Kim, Jong-Sun;Lee, Sang-Won;Kang, Hee-Cheol
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.25-54
    • /
    • 2015
  • Syenite is not a common rock, unlike granitic rocks formed the major component of the continental crust. The aim of this study is to decipher the occurrences and detailed descriptive characteristics of the syenite distributed in Sancheong area, and to investigate the petrogenesis of the syenitic magma based on geochemical study. The dominant minerals in syenite are alkali feldspar (usually orthoclase and rarely microcline), plagioclase, amphibole, biotite, and quartz. Syenites are found in a wide variety of colors. The anhedral hornblende and biotite filling the boundary of feldspar and quartz indicate that the hydrous minerals were crystallized lately, and that water was insufficient at the beginning of crystallization in magma. According to the analysis of mineral composition, amphibole in syenite is mostly ferro-edenite, and the pressure is calculated as 3.3~4.9 kb with 11.9~17.3 km of emplacement depth. Biotite and pyroxene are plotted in the region of annite and hedenbergite, respectively. Based on petrochemical studies of major elements, syenite belongs to alkaline series, metaluminous, and I-type. On the other hand, the variation patterns of trace and rare earth elements of syenite differ from the patterns of diorite and granite. In the geochemical characteristics, syenite is different from gabbro-diorite spatially adjacent to syenite, as well as granite. These results suggest that each rock has been generated from the different sources of magma. Additionally, based on the experimental data, the syenitic magma can be formed (1) by the partial melting at a high pressure and dry system, (2) when the initial crystallization minerals to be residue with migration of the residual melts separated from the ascending cotectic magma (3) when fluorine compositions to be plentiful in the protolith and/or at depth of the magma. Based on the petrographic characteristics of the syenite, Sancheong syenitic magma may have been formed by partial melting in a dry system.

Petrology of the Tertiary Basaltic Rocks in the Yeonil and Eoil Basins, Southeastern Korea (한반도 동남부 제3기 연일, 어일분지에 나타나는 현무암질암의 암석학적 연구)

  • Shim, Sung-Ho;Park, Byeong-Jun;Kim, Tae-Hyeong;Jang, Yun-Deuk;Kim, Jung-Hoon;Kim, Jeong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • Eoil basalt in the Eoil basin and Yeonil basalt and its related volcanic rocks in Guryongpo and Daebo area were researched and analyzed to purse the tectonic settings and magma characteristics of those Tertiary volcanic rocks in the south-east Korean peninsula. It is highly suggested that zoning, resorption and sieve texture in plagioclase and reaction rim in pyroxene indicate unstable tectonic environments and complex volcanism in the study area. Volcanic rocks from Janggi basin are identified as basalt and basaltic andesite in TAS diagram and sub-alkaline series in terms of magma differentiation. $Na_2O$ and $K_2O$ show positive trend however FeO, CaO, MgO and $P_2O_5$ indicate negative trend in Harker variation diagram with $SiO_2$. Basaltic rocks from Eoil area are identified as calc-alkaline series in AFM diagram and show medium K series calc-alkaline in $K_2O-SiO_2$ diagram. Compatible trace elements of Co, Ni, V, Zn, and Sc in Yeonil basalt show negative trend with crystallization but incompatible trace element of Ba, Rb show positive trend with $SiO_2$ 0.81~1.00 of $Eu/Eu^*$ value suggests minor effect of plagioclase fractionation in Yeonil basaltic rocks. Plagioclase composition of Eoil basalt ranges from $An_{63.46-98.38}\;Ab_{1.62-32.96}\;Or_{0-3.58}$ (anorthite-labradorite) in core to $An_{40.89-82.44}\;Ab_{17.10-46.43}\;Or_{0-12.68}$ (bytownite-labradorite) in rim. $^{87}Sr/^{86}Sr$ and 143Nd;t44Nd ranges 0.704090~0.704717 and 0.512705~0.512822 respectively. Negative linear trends in 87Sr/86Sr and $^{143}Nd/^{144}Nd$ correlation diagram indicate that magma produced Yeonil basalt and basaltic andesite has been originated as partial melting product of mantle wedge by subducting Pacific plate affected by oceanic crust with less effect of continental crust indicating calc-alkaline magma characteristics.

Stratigraphy and Provenance of Non-marine Sediments in the Tertiary Cheju Basin (제주분지 제삼기 육성층의 층서 및 퇴적물 기원)

  • Kwon Young-In;Park Kwan-Soon;Yu Kang-Min;Son Jin-Dam
    • The Korean Journal of Petroleum Geology
    • /
    • v.3 no.1 s.4
    • /
    • pp.1-15
    • /
    • 1995
  • Seismic reflection profiles and exploratory drilling well samples from the southern marginal-continental shelf basin of Korea delineate that the Tertiary sedimentary sequences can be grouped into five sequences (Sequence A, Sequence B, Sequence C, Sequence D and Sequence E, in descending order). Paleontologic data, K-Ar age datings, correlation with tuff layers and sequence stratigraphic analysis reveal that the sequences A, B, C, D and E can be considered as the deposits of Holocene $\~$ Pleistocene, Pliocene, Late Miocene, Early $\~$ Middle Miocene and Oligocene, respectively. The sequence stratigraphic and structural analyses suggest that the southern part of the Cheju Basin had experienced severe folding and faulting. NE-SW trending strike-slip movement is responsible for the deformation. The sinistral movement of strike-slip fault ceased before the deposition of Sequence B. Age dating and rare-earth elements analysis of volvanic rocks reveal+ that the Sequence D was deposited during the Early $\~$ Middle Miocene and the Sequence I was deposited earlier than the deposition of the Green Tuff Formation. Sedimentary petrological studies indicate that sediments of the Sequence I came from the continental block provenance. After the deposition of the Sequence E, uplift of the source area resulted in increase of sediment supply, subsidence and volcanic activities. The Sequence D show these factors and the sediments of the Sequence D are considered to be transported from the recycled orogenic belt.

  • PDF