Annual Conference on Human and Language Technology
/
2001.10d
/
pp.381-387
/
2001
자연 언어 처리의 구문 구조 분석에서는 수식 관계의 중의성에 의한 많은 구문 구조가 생성된다. 이러한 중의성을 해소하는데 어휘 정보가 유용하다는 것은 잘 알려져 있다. 본 논문은 한국어의 구문 구조 분석 시 중의성을 해소하기 위해 어휘 정보로 부사 수식 정보와 부사 확률 정보를 사용한다. 부사들의 사용과 수식 패턴들을 대량의 말뭉치로부터 조사하고, 수식 패턴들 중 비교적 규칙적인 것들을 부사 수식 정보로, 피수식어의 상대적 위치와 피수식어의 품사에 대한 확률을 부사 확률 정보로 구성하였다. 구문 구조들 중 가장 옳은 구문 구조를 선택하기 위해 부사 수식 정보와 부사 확률 정보를 이용하였고, 구문 분석에서 부사에 의한 중의성을 해소하였다.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.22
no.2
/
pp.5-25
/
2011
This study aims to identify the most effective statistical feature selecting method and context window size for word sense disambiguation using supervised methods. In this study, features were selected by four different methods: information gain, document frequency, chi-square, and relevancy. The result of weight comparison showed that identifying the most appropriate features could improve word sense disambiguation performance. Information gain was the highest. SVM classifier was not affected by feature selection and showed better performance in a larger feature set and context size. Naive Bayes classifier was the best performance on 10 percent of feature set size. kNN classifier on under 10 percent of feature set size. When feature selection methods are applied to word sense disambiguation, combinations of a small set of features and larger context window size, or a large set of features and small context windows size can make best performance improvements.
The Sejong Electronic(machine readable) Dictionary, which was developed by the 21 century Sejong Plan, contains a systematic of immanence information of Korean words. It helps in solving the problem of electronical presentation of a general text dictionary commonly used. Word sense disambiguation problems can also be solved using the specific information available in the Sejong Electronic Dictionary. However, the Sejong Electronic Dictionary has a limitation of suggesting structure of sentences and selection-restricted nouns. In this paper, we discuss limitations of word sense disambiguation by using subcategorization information as suggested by the Sejong Electronic Dictionary and generalize selection-restricted noun of argument using Korean Lexico-semantic network.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.06a
/
pp.48-55
/
2000
본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과(94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.
Annual Conference on Human and Language Technology
/
2000.10d
/
pp.48-55
/
2000
본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과 (94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.940-942
/
2004
한국어 텍스트 음성합성에서 문장 기호의 문자화에 나타나는 오류는 기호의 중의성에 기인한다. 선행연구에서 규칙에 기반하여 중의성을 해결하는 방안이 제안되었으나 여전히 기호는 다양한 문맥에서 높은 중의성을 가지고 문자화된다. 따라서 본 연구에서는 신문 텍스트에 나타나는 문장 기호 중 이음표의 문자화를 이음표를 포함한 어절의 패턴, 패턴의 좌우에 위치하는 어절 정보 및 휴리스틱스 자질을 학습하여 제시된 이음표의 문자화의 중의성을 해소하는 방안을 제안하였다. 이를 위해 국내 1개 일간지 2년 치 기사에서 이음표를 포함한 어절 49,000여 개를 임의 추출하여 분석하였고, 분석된 자질을 자동추출하여 결정 트리를 구성하였다. 실험 결과, 96.2%~97.7%의 정확도를 보였다.
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.81-84
/
2015
자연어 문서에 출현하는 단어에는 중의적 단어가 있으며, 이 단어에서 발생되는 의미 모호성은 대개 그 문맥에 따라 해소된다. 의미 모호성 해소 연구 중, 한국어 단어 공간 모델 방법은 의미 태그 부착 말뭉치를 이용하여 단어의 문맥 정보를 구축하고 이를 이용하여 모호성을 해결하는 연구로서 비교적 좋은 성능을 보였다. 본 연구에서는 Word2Vec를 이용하여 기존 연구인 한국어 단어 공간 모델의 단어 벡터를 효과적으로 축소할 수 있는 방법을 제안한다. 세종 형태 의미 분석 말뭉치로 실험한 결과, 제안한 방법이 기존 성능인 93.99%와 유사한 93.32%의 정확률을 보이면서도 약 7.6배의 속도 향상이 있었다.
Annual Conference on Human and Language Technology
/
1997.10a
/
pp.75-82
/
1997
이글은 한국어 형태소 분석시 발생하는 중의성의 유형에 대해서 논의하고, 그와 같은 여러 유형의 중의성의 발생율을 감소시키기 위한 방법으로써 '어절 정보 사전 시스템'의 구축을 강조하였다. 한국어 문서에 대한 형태소 분석시 발생하는 중의성은, 영어나 유럽어와는 달리, 어휘 형성 정보 뿐아니라 어절 형성 정보, 구문 구조에 관한 부분적인 정보까지도 제공되어야 비로소 해소될 수 있는 경우가 많아 이와 같은 정보를 얻어내기 위해서는 체계적으로 고안된 범용의 사전 (Lexicon)이 필요하다. 여기에서는 접사가 동반되어 구성될 수 있는 '파생 명사(Affixed Noun)'들의 경우에 논의의 범위를 제한하였다. 실제로, 체계적으로 구성된 하나의 파생어 사전은. 주어진 어절에 대한 형태소 분절시 발생할 수 있는 엄청난 수의 중의적 가능성을 해소해 줄 수 있는데. 이와 같은 사전을 구축하기 위해서는 단순어와 접사 사전이 모듈화되어 완성되어야 한다. 같은 방법으로 모든 합성어 유형에 대한 사전이 구축되고, 그러한 기본 형태들에 대한 '변화형' 사전이 결합되면 어절 정보를 갖춘 대용량의 한국어 MRD의 구현이 가능해질 것이다.
The goal of Natural Language Processing(NLP) is to make a computer understand a natural language and to deliver the meanings of natural language to humans. Word sense Disambiguation(WSD is a very important technology to achieve the goal of NLP. In this paper, we describe a technology for automatic homonyms disambiguation using both Mutual Information(MI) and a Sense-Tagged Compound Noun Dictionary. Previous research work using word definitions in dictionary suffered from the problem of data sparseness because of the use of exact word matching. Our work overcomes this problem by using MI which is an association measure between words. To reflect language features, the rate of word-pairs with MI values, sense frequency and site of word definitions are used as weights in our system. We constructed a Sense-Tagged Compound Noun Dictionary for high frequency compound nouns and used it to resolve homonym sense disambiguation. Experimental data for testing and evaluating our system is constructed from QA(Question Answering) test data which consisted of about 200 query sentences and answer paragraphs. We performed 4 types of experiments. In case of being used only MI, the result of experiment showed a precision of 65.06%. When we used the weighted values, we achieved a precision of 85.35% and when we used the Sense-Tagged Compound Noun Dictionary, we achieved a precision of 88.82%, respectively.
Annual Conference on Human and Language Technology
/
1998.10c
/
pp.15-19
/
1998
기계 번역 시스템에서 품사 태거의 오류는 전체번역 정확률에 결정적인 영향을 미친다. 따라서 어휘 단계의 정보만으로는 중의성 해소가 불가능한 단어에 대해서는 중의성 해소에 충분한 정보를 얻을 수 있는 구문 분석이나 의미 분석 단계까지 완전한 중의성 해소를 유보하는 N-best 품사 태거가 요구된다. 또한 N-best 품사 태거는 단어에 할당되는 평균 품사 개수를 최소화함으로써 상위 단계의 부하를 줄이는 본연의 역할을 수행하여야 한다. 본 논문은 통계 기반 품사 태깅 방법을 이용하여 N-best 후보를 선정하고, 선정된 N-best 후보에 언어 규칙을 적용하여 중의성을 감소시키거나 오류를 보정하는 혼합형 N-best 품사 태깅 방법을 제안한다 제안된 N-best 품사 태거는 6만여 단어의 영어 코퍼스에서 실험한 결과, 단어 당 평균 1.09개의 품사를 할당할 때 0.43%의 오류율을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.