• Title/Summary/Keyword: 중온

Search Result 211, Processing Time 0.022 seconds

Treatment of Food Waste Leachate using Lab-scale Two-phase Anaerobic Digestion Systems (실험실 규모 2상 혐기성 소화를 이용한 음식물 쓰레기 탈리액의 처리)

  • Heo, Ahn-Hee;Lee, Eun-Young;Kim, Hee-Jun;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1231-1238
    • /
    • 2008
  • This study was performed to evaluate the treatability of food waste leachate using lab-scale two-phase anaerobic digestion system. Effects of influent pH, hydraulic retention time (HRT), and recycle of methanogenic reactor effluent to the thermophilic acidogenic reactors were investigated. For methanogenic reactors, effects of internal solids recycle and temperature were studied. Performance of the acidogenic reactors was stable under the conditions of influent pH of 6.0 and HRT of 2 d with the recycle of methanogenic reactor effluent, and acidification and VS removal efficiency were about 30% and 40%, respectively. Up to the organic loading rate (OLR) of 7 g COD/L/d, effluent SCOD values of mesophilic and thermophilic methanogenic reactors either lower or kept the same with the internal solids recycle. Also, decreasing tendency in specific methane production (SMP) due to the organic loading increase became diminished with the internal solids recycle. Mesophilic methanogenic reactors showed higher TCOD removal efficiency and SMP than thermophilic condition under the same OLR as VSS was always higher under mesophilic condition. In sum, thermophilic acidogenesis-mesophilic methanogenesis system was found to be better than thermophilic-thermophilic system in terms of both organic removal and methane production.

The effects of some additives on Methane Fermentation of Paper Mill Sludge treated with Alkali (알칼리 처리된 제지슬러지의 메탄발효에 미치는 몇몇 첨가제의 효과)

  • Choi, Jong-Woo;Lee, Kyu-Seung;Park, Seung-Heui
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.2
    • /
    • pp.134-142
    • /
    • 1995
  • In order to elevate the efficiency of methane fermentation using the paper mill sludge, this experiment was conducted at two temperature conditions($35^{\circ}C$ and $60^{\circ}C$), and overlooked the addition effects of ethyl acetate as a substrate, nickel as a constituent of $F_430$, and sulfur as a cell growth factor and reductant. The cellulose of paper mill sludge was degraded to lower molecular materials by heating at $60^{\circ}C$ and NaOH treatment. Methane forming rates were 4.8% from NaOH-treated paper mill sludge added with ethyl acetate, 16.5% with sodium sulfide, 19.8% with nickel trioxide, 31.9% with mixture, and 9.6% with control at $60^{\circ}C$, but 0.21% with ethyl acetate, 2.14% with nickel acetate, 3.02% with nickel sulfate, 3.34% with nickel trioxide and 0.62% with control at $35^{\circ}C$. Therefore, methane yield was increased by approximately 10-fold at $60^{\circ}C$ than $35^{\circ}C$, and fermentation liquid added with mixture(nickel trioxide+ethyl acetate+sodium sulfide) at $60^{\circ}C$ showed the medium pH(7.0), higher COD value and lower nitrogen content.

  • PDF

Degradation of Dibenzothiophene, and Desulfurization of Crude Oil and Bunker C Oil by Sulfate Reducing Bacteria (황산염 환원세균에 의한 Dibenzothiophene, 원유 및 Bunker C 유의 탈황)

  • 김해영;김태성;김병홍
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.31-34
    • /
    • 1990
  • Dibenzothiophene, crude oil and bunker C oil were used in the microbial desulfurization experiments using thermophilic and mesophilic strains of Desulfovibrio and Desulfotomaculum. Mesophilic Desulforvibrio desulfuricans M6 showed the degrees of sulfur removal about 42% and 17% from dibenzothiophene and crude oil, respectively. Thermophilic Desulfovibrio thermophilus showed the degrees of sulfur removal about 68% and 33% from dibenzothiophene and bunker C oil. The strains of Desulfotomaculum were much less efficient than strains of Desulfovibrio. The latter have more complex and stronger gydrogen metabolism. These results showed that desulfurization is closely related to the hydrogen metabolism of the sulfate reducing bacteria.

  • PDF

Study on catalyst infiltration into the porous LSGM scaffold typed anode for LSGM electrolyte (LSGM 기반의 IT-SOFC를 위한 Infiltration 기법을 이용한 다공성의 LSGM 연료극 형성에 관한 연구)

  • Yoon, Byoung Young;Kim, Junghyun;Bae, Joongmyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.85.2-85.2
    • /
    • 2011
  • 현재 중온의 고체산화물 연료전지를 위해 다양한 전해질에 대한 연구되었으며 1994년 Ishihara et al.에서 1074K의 온도에서 높은 이온전도도를 갖는 페록스카이 구조를 갖는 LSGM 물질을 발표하였다. Sr과 Mg을 도핑한 Lanthanum gallate는 이온전도도가 1073K에서 0.14S/cm로 YSZ의 5배로 높은 이온전도도를 갖고 있으며 산화환경에서부터 환원환경에서 화학적으로 안정한 특성을 갖고 있다. 또한 LSGM 전해질은 넓은 산소 농도범위에서 안정적인 특성을 갖는 장점을 갖고 있다. 그러나 LSGM은 가장 널리 사용되는 연료극의 Ni 촉매와 고온 소결시 상호확산현상에 의한 2차상을 생성시켜 성능 저감의 원인으로 그 해결방안이 요원한 실정이다. 이에 본 논문에서는 LSGM 전해질에 LSGM scaffold를 형성하고 형성된 scaffold에 연료극 촉매 solution을 infiltration 시켜 저온에서 anode를 형성하여 그 성능을 연구하였다.

  • PDF