• Title/Summary/Keyword: 중앙값 필터

Search Result 36, Processing Time 0.024 seconds

A Seamless Positioning System using GPS/INS/Barometer/Compass (GPS/INS/기압계/방위계를 이용한 연속 측위시스템)

  • Kwon, Jay-Hyoun;Grejner-Brzezinska, D.A.;Jwa, Yoon-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.47-53
    • /
    • 2006
  • In this contribution, an integration of seamless navigation system for the pedestrian is introduced. To overcome the GPS outages in various situations, multi-sensor of GPS, INS, electronic barometer and compass are considered in one Extented Kalman filter. Especially, the integrated system is designed for low-cost for the practical applications. Therefore, a MEMS IMU is considered, and the low quality of the heading is compensated by the electronic compass. In addition, only the pseudoranges from GPS measurements are considered for possible real-time application so that the degraded height is also controlled by a barometer. The mathematical models for each sensor with systematic errors such as biases, scale factors are described in detail and the results are presented in terms of a covariance analysis as well as the position and attitude errors compared to the high-grade GPS/INS combined solutions. The real application scenario of GPS outage is also investigated to assess the feasible accuracy with respect to the outage period. The description on the current status of the development and future research directions are also stated.

  • PDF

Autonomous Battle Tank Detection and Aiming Point Search Using Imagery (영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구)

  • Kim, Jong-Hwan;Jung, Chi-Jung;Heo, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This paper presents an autonomous detection and aiming point computation of a battle tank by using RGB images. Maximally stable extremal regions algorithm was implemented to find features of the tank, which are matched with images extracted from streaming video to figure out the region of interest where the tank is present. The median filter was applied to remove noises in the region of interest and decrease camouflage effects of the tank. For the tank segmentation, k-mean clustering was used to autonomously distinguish the tank from its background. Also, both erosion and dilation algorithms of morphology techniques were applied to extract the tank shape without noises and generate the binary image with 1 for the tank and 0 for the background. After that, Sobel's edge detection was used to measure the outline of the tank by which the aiming point at the center of the tank was calculated. For performance measurement, accuracy, precision, recall, and F-measure were analyzed by confusion matrix, resulting in 91.6%, 90.4%, 85.8%, and 88.1%, respectively.

Adaptive Convolution Filter-Based 3D Plane Reconstruction for Low-Power LiDAR Sensor Systems (저전력 LiDAR 시스템을 위한 Adaptive Convolution Filter에 기반한 3D 공간 구성)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1416-1426
    • /
    • 2021
  • In the case of a scanning type multi-channel LiDAR sensor, the distance error called a walk error may occur due to a difference in received signal power. This work error causes different distance values to be output for the same object when scanning the surrounding environment based on multiple LiDAR sensors. For minimizing walk error in overlapping regions when scanning all directions using multiple sensors, to calibrate distance for each channels using convolution on external system. Four sensors were placed in the center of 6×6 m environment and scanned around. As a result of applying the proposed filtering method, the distance error could be improved by about 68% from average of 0.5125 m to 0.16 m, and the standard deviation could be improved by about 48% from average of 0.0591 to 0.030675.

Gravity Removal and Vector Rotation Algorithm for Step counting using a 3-axis MEMS accelerometer (3축 MEMS 가속도 센서를 이용한 걸음 수 측정을 위한 중력 제거 및 백터 전환 알고리즘)

  • Kim, Seung-Young;Kwon, Gu-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose Gravity Removal and Vector Rotation algorithm for counting steps of wearable device, and we evaluated the proposed GRVR algorithm with Micro-Electro-Mechanical (MEMS) 3-axis accelerometer equipped in low-power wearable device while the device is mounted on various positions of a walking or running person. By applying low-pass filter, the gravity elements are canceled from acceleration on each axis of yaw, pitch and roll. In addition to DC-bias removal and the low-pass filtering, the proposed GRVR calculates acceleration only on the yaw-axis while a person is walking or running thus we count the step even if the wearable device's axis are rotated during walking or running. The experimental result shows 99.4% accuracies for the cases where the wearable device is mounted in the middle and on the right of the belt, and 91.1% accuracy which is more accurate than 83% of commercial 3-axis pedometer when worn on wrist for the case of axis-rotation.

Estimation and Mapping of Soil Organic Matter using Visible-Near Infrared Spectroscopy (분광학을 이용한 토양 유기물 추정 및 분포도 작성)

  • Choe, Eun-Young;Hong, Suk-Young;Kim, Yi-Hyun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.968-974
    • /
    • 2010
  • We assessed the feasibility of discrete wavelet transform (DWT) applied for the spectral processing to enhance the estimation performance quality of soil organic matters using visible-near infrared spectra and mapped their distribution via block Kriging model. Continuum-removal and $1^{st}$ derivative transform as well as Haar and Daubechies DWT were used to enhance spectral variation in terms of soil organic matter contents and those spectra were put into the PLSR (Partial Least Squares Regression) model. Estimation results using raw reflectance and transformed spectra showed similar quality with $R^2$ > 0.6 and RPD> 1.5. These values mean the approximation prediction on soil organic matter contents. The poor performance of estimation using DWT spectra might be caused by coarser approximation of DWT which not enough to express spectral variation based on soil organic matter contents. The distribution maps of soil organic matter were drawn via a spatial information model, Kriging. Organic contents of soil samples made Gaussian distribution centered at around 20 g $kg^{-1}$ and the values in the map were distributed with similar patterns. The estimated organic matter contents had similar distribution to the measured values even though some parts of estimated value map showed slightly higher. If the estimation quality is improved more, estimation model and mapping using spectroscopy may be applied in global soil mapping, soil classification, and remote sensing data analysis as a rapid and cost-effective method.

Mountain Meteorology Data for Forest Disaster Prevention and Forest Management (산림재해 방지와 산림관리를 위한 산악기상정보)

  • Keunchang, Jang;Sunghyun, Min;Inhye, Kim;Junghwa, Chun;Myoungsoo, Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.346-352
    • /
    • 2022
  • Mountain meteorology in South Korea that is covered mountains with complex terrain is important for understanding and managing the forest disaster and forest ecosystems. In particular, recent changes in dryness and/or rainfall intensity due to climate change may cause an increase in the possibility of forest disasters. Therefore, accurate monitoring of mountain meteorology is needed for efficient forest management. Korea Forest Service (KFS) is establishing the Automatic Mountain Meteorology Observation Stations (AMOS) in the mountain regions since 2012. 464 AMOSs are observing various meteorological variables such as air temperature, relative humidity, wind speed and direction, precipitation, soil temperature, and air pressure for every minute, which is conducted the quality control (QC) to retain data reliability. QC process includes the physical limit test, step test, internal consistency test, persistence test, climate range test, and median filter test. All of AMOS observations are open to use, which can be found from the Korean Mountain Meteorology Information System (KoMIS, http://mtweather.nifos.go.kr/) of the National Institute of Forest Science and the Public Data Portal (https://public.go.kr/). AMOS observations with guaranteed quality can be used in various forest fields including the public safety, forest recreation, forest leisure activities, etc., and can contribute to the advancement of forest science and technology. In this paper, a series of processes are introduced to collect and use the AMOS dataset in the mountain region in South Korea.