본 논문에서는 특이 칼라 분포에 대한 정보를 활용함으로써 어떠한 사전 지식없이 칼라 영상으로부터 중심 객체를 추출하는 방법에 대해 제안한다. 중심 객체는 영상 중심 부근에 위치하면서 특이 칼라 분포를 갖는 영역들의 집합으로 정의한다. 특이 칼라는 영상 경계 주변에 비해 영상의 중심 위치에서 보다 높은 밀도로 존재하는 칼라로 정의한다. 중심 객체 추출을 위해 우선 특이 칼라 정보를 사용하여 영상 분할된 영역 중에서 객체의 특징을 대표하는 영역들의 집합을 핵심객체영역을 선택한다. 핵심객체영역에 인접하며 이와 높은 칼라 유사도를 갖고 또한 배경이 아닌 영역들을 반복적으로 핵심객체영역에 병합하여 핵심객체영역을 확장함으로써 생성된 최종 병합 결과를 중심 객체로 추출한다. 따라서 중심 객체는 상이한 칼라 특징을 갖는 영역으로 구성될 수 있으며 상호 연결되어 있을 경우에는 두개 이상의 객체가 중심 객체에 포함될 수 있다. 제안된 방법의 타당성 및 중요 칼라의 유용성은 다양한 실험 영상을 통해 확인하였다. 본 논문에서 제안된 방법으로 추출된 중심 객체는 영상 검색 응용 분야에 유용하게 사용될 수 있을 것으로 기대한다.
본 논문에서는 영상에 포함된 중심 객체를 추출하는 방법에 대해 제시한다. 중심 객체는 촬영의 중심이 되어 영상의 중앙 부분에 비교적 큰 면적을 차지하는 객체로 정의하는데 영상 내용에 대한 중요한 정보를 제공한다. 중심 객체 추출을 위해 우선 입력 영상에 대해 해상도를 줄여가며 영상 분할하고 분할된 결과에 대해 계층적 영역 병합을 수행함으로써 객체가 많은 수의 영역으로 세분화되어 영상 분할되는 것을 방지할 수 있도록 하였다. 분할된 각 영역은 영상의 경계와 접하는 경계 영역과 그 외의 비경계 영역으로 분류하였다. 비경계 영역은 중심 객체에 해당될 가능성이 있는 영역으로써, 이들 중에서 영상 중심 부근에서 가장 큰 크기를 차지하는 영역이 핵심객체영역으로 선택된다. 또한 경계 영역 중에서 영상의 네 모서리에 인접하는 영역은 핵심배경영역으로 선택되어 핵심객체영역과 함께 중심 객체 추출에 이용된다. 각 비경계 영역은 핵심 배경영역및 핵심객체영역과 칼라 분포 유사도출 비교하여 배경영역과 전경영역으로 분류된다. 핵심객체영역 및 핵심객체영역과 연결성을 가지는 전경영역이 최종 중심 객체로 선택된다. 본 논문에서 제안된 방법은 비교적 복잡한 배경을 갖는 영상에 대해서도 어느 정도 만족할 만한 결과를 얻을 수 있었다.
대부분의 객체지향 방법론은 객체를 중심으로 한 객체 모델링을 바탕으로 소프트웨어를 개발한다. 물론, 객체 모델링 방법은 여러 가지 장점을 가지고 있지만 복잡한 문제를 가진 대규모의 시스템에는 적합하지 않다. 따라서, 이런 복잡한 대규모 시스템을 객체의 패턴에 따라 간단한 모델로 분할할 필요성이 있으며 이를 위하여 역할 모델링 방법이 제안되었다. 본 논문은 객체의 패턴들을 추상화하고 복잡한 대규모 시스템을 관계의 분리를 통하여 간단한 모델로 생성할 수 있도록 객체 중심이 아닌 역할을 중심으로 한 역할 모델링 방법을 연구하였다.
우리가 원하는 고수준의 검색 개념을 영상에서의 저수준 특징들을 조합하여 표현하는 데는 한계가 있다. 한편, 우리의 검색 개념은 주로 영상에 포함된 객체 단위로 형성되는 것이 일반적이다. 본 논문에서는 영상의 중심 부근에 비교적 큰 크기로 정의되는 중심 객체 및 중심 객체주변의 배경 영역을 추출하여 검색에 활용함으로써, 인간의 검색 의지를 최대한 정확하게 반영할 수 있는 하나의 방법을 제안한다. 중심 객체와 배경 영역은 영상분할 및 영역병합 결과에서 영상의 중앙 및 모서리에 존재하는 영역을 선정하여 칼라 유사도를 기준으로 영역확장을 통해 구한다. 검색은 단계적으로 할 수 있도록 하였는데, 먼저 사용자의 키워드에 의한 검색이 가능하도록 하였으며, 검색 결과는 그룹핑에 의한 대표영상을 보여 준 후 사용자가 원하는 영상을 선택적으로 얻을 수 있도록 하였다. 아울러, 하나 이상의 영상에서 추출된 객체와 배경을 조합하여 재검색할 수 있도록 함으로써 검색 성능을 높이고자 하였다. 한편, 자동 추출된 객체를 이용하여 사용자가 객체 영역을 지정하기 위해 개입하는 번거로움을 줄이면서도 사용자가 영역을 직접 선택한 경우와 비슷한 결과를 얻을 수 있도록 하였다.
본 논문에서는 이동 객체를 추적하기 위해 HSI 색상 모델 기반으로 하는 파티클 필터를 이용하고, 차영상을 통해 추적하고자 하는 객체의 중심점을 보완하는 방법을 제안한다. 색상 모델 기반 파티클 필터로 이동 객체를 추적했을 때, 객체의 색 혼합도의 문제로 객체의 중심과 파티클들의 분포에 대한 정확성이 떨어져 추적의 어려움이 있다. 이 문제를 해결하기 위해 각 프레임마다 차영상을 만들어 이동객체의 중심점을 찾고, 파티클 필터로 추적한 중심점과 비교하여 객체의 중심점을 보완해 추적에 대한 정확성을 높일 수 있다.
본 논문에서는 새롭게 제안하는 Multi-Path Encoder-Decoder 의 구조를 바탕으로 두개의 가지로 구성된 심층신경망을 통해서 영상 이미지에서 물체를 하나의 객체 단위로 분할 검출하는 방법을 제안하였다. 각 가지는 중심점 검출 가지(Dot branch), 객체 분할 가지(Segmentation branch)라 하고 중심점 검출 가지는 이미지로부터 각 객체의 중심점을 찾는 역할을 수행하고, 객체 분할 가지는 각 객체의 영역을 이미지로부터 분할하는 역할을 수행한다. 실험에서는 CVPPP 식물 이미지의 나뭇잎을 각각 구분하도록 학습 하였으며 중심점 검출 가지는 각 나뭇잎의 중심점들을 찾아내고, 객체 분할 가지는 원본 이미지와 찾아낸 중심점 이미지를 통하여 각 중심점에 해당하는 나뭇잎의 픽셀 분할 영역을 최종적으로 예측하게 된다. 기존의 객체 분할에서는 다양한 크기, 위치의 앵커박스를 만들어서 많은 영역(N > 1k)의 물체를 확인해야하는 연산량 문제점 혹은 이미지에서 고정되지 않는 총 객체의 개수를 예측하기 어려웠던 문제가 있었다. 제안한 심층신경망에서는 중심점을 기반으로 객체를 찾아내는 효과적인 방법을 제안하였다.
본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다 영상 분류를 위해 객체의 특징에 기반하여 세 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 마지막 기준은 객체의 핵심 영역 경계에서의 경계 강도이다. 영상을 분류하기 위해서 신경 회로망 학습을 통해서 세 가지 기준들을 통합하도록 한다. 900개의 영상들에 대해 실헝한 결과 84.2%의 분류 정확도를 얻었다.
본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다. 영상 분류를 위해 객체의 특징에 기반을 두고 네 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심 영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다. 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 세 번째 기준은 중심 객체의 평균 경계강도이다. 세 번째 기준은 분류 기준들중에서 가장 우수한 분류 성능을 나타내지만 특징값을 추출하기 위해서는 중심 객체를 추출해야 되는 많은 연산을 내포하고 있다. 이에 이와 비슷한 특성을 나타내는 네 번째 기준으로 영상 중심 영역에서의 평균 경계강도를 선택하였다. 네 번째 분류 기준은 세 번째 분류 기준에 비해 분류 성능은 조금 낮지만 빠르게 특징값을 추출할 수 있어 많은 데이터를 빠른 시간 내에 처리해야 되는 대규모 영상 데이터 베이스에 적용가능하다. 영상을 분류하기 위해 신경회로망 및 SVM을 사용하여 이들 기준들을 통합하였으며 신경회로망 및 SVM의 분류 성능을 비교하였다.
기존의 데이타 모델 및 설계 방법론들은 실세계의 데이타 객체에 대해 고정된 한 측면의 모델 표현만을 허용하기 때문에 여러 측면으로 관측이 가능한 실세계 객체들의 표현에 어려움을 갖는다. 제시한 객체 중심 측면 모델(OOAM : Object-Oriented Entity Aspect Model)은 실세계의 각 객체에 대해 다수의 측면 표현을 가능하게 한 객체 중심의 데이타 모델로 데이타와 지식 표현에 유용한 모델이다. 데이타베이스 시스템과 지식베이스 시스템 중 어느 하나의 시스템이 다른 시스템의 특징을 빌리거나 통합할 수 있다면 두 시스템에게 서로 이득이 될 수 있다. 이러한 KB/DB(Knowledge Base/Data Base)의 통합은 최근에 객체 지향 개념과 연역 개념에 의해 연구가 활발히 진행되고 있다. 본 논문에서는 객체의 측면 개념을 제공하는 OOAM의 기본 개념을 보여주고 OOAM에 의해 구축되는 데이타베이스 스키마의 시맨틱을 분석하고 서술하기 위해 OOAM을 형식적으로 정의하였다. 그리고 KB/DB 통합에 관련된 연구들을 분석하고 데이타베이스에 관련된 지식의 종류를 서술한 후 OOAM을 사용하여 KB/DB 통합을 위한 지식베이스와 데이타베이스의 개발 방법론을 제시하였다.
본 논문에서는 외형 정보 기반의 객체 정보 분할을 이용한 다중객체 추적을 다룬다. 일반적인 다중객체 추적 시스템은 움직임이 탐지된 다중 객체에 대한 외형(appearance) 정보를 이용하여 비강체를 정의하고, 객체의 일부 특징점이나 무게 중심점을 이용한 추적을 통해 객체간의 중첩(occlusion)이나 객체 분리(split) 등의 문제에 초점을 맞춘다. 무게 중심점 등을 이용한 추적은 장시간 추적하는 경우, 즉 움직임 방향 전환이 발생하는 경우에는 정확하고 매끄러운 추적이 불가능하다. 본 논문에서는 이러한 문제를 해결하기 위해 어파인 구조를 이용한 개별 객체 추적 기법을 적용하되, 객체에 대한 외형 정보를 바탕으로 객체 분리 및 객체별 어파인 구조 변환을 감지하여 정확하고 매끄럽게 다중 객체를 추적하는 알고리즘을 제안하고 성능을 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.