• Title/Summary/Keyword: 중성자 방사선

Search Result 228, Processing Time 0.025 seconds

임상적 이용에 필요한 중성자 측정

  • Chung, Hyun-Woo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.3 no.1
    • /
    • pp.19-25
    • /
    • 1989
  • The purpose of this presentation is to outline the measurement made at Korea Cancer Center Hospital, KAERI, and to present the result obtained. These measurements were designed to demonstrate the complicance of the isocentric fast neutron facility. 1. Neutron production and delivary. 2. Physical parameters of the neutron beam. 3. Neutron beam calibration including 'n' ratio and detector design. 4. Treatment planning. 5. Health physics consideration etc. will be covered the above topics.

  • PDF

Fast Neutron Dosimetry in Criticality Accidents (핵임계사고시(核臨界事故時)에 있어서 속중성자선량(速中性子線量)의 해석(解析))

  • Ro, Seung-Gy;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 1976
  • A suggestion has been made for neutron dosimetric techniques using activation and threshold detectors in criticality accidents. Neutron dosimetrical parameters, namely, the fission spectrum-averaged cross-sections of some threshold reactions and fluence-to-dose conversion factors have been calculated by the use of an electronic computer. It appears that detectors having comparatively high threshold energy give more fine information on spectral deformation in criticality accidents, while detectors with low threshold energy are of usefulness for measuring fast neutron fluence regardless of fissioning types. Unexpectedly it is found that the fission spectrum-averaged cross sections of the $^{32}S(n,\;p)^{32}P$ reaction is not sensitive to analytical forms of fission neutron spectrum: the modified Cran-berg and Maxwellian forms. In addition, the fluence-to-dose conversion factors seem to be insensitive to both spectral functions and fissioning types.

  • PDF

Neutron Dosimetry with Solid State Track Detector (고체비적검출기(固體飛跡檢出器)를 이용(利用)한 중성자선량(中性子線量) 측정(測定))

  • Yook, Chong-Chul;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1977
  • A base of photographic posi-film which is commecially available has been found to be a possible alpha-particle track detector. Its neutron dosimetric characteristics, i. e., alpha-particle track registrating efficiency and optimum condition of track formation by chemical etching, have been determined experimentally. The range of neutron fluence and dose capable of being measured by a neutron dosimeter consisting of alpha-particle radiator foils $(^{10}B\;and\;^{27}Al)$ and posi-flim solid state track detector, has been estimated on the basis of experimental results and theoryetical background. This detector seems to be useful for neutron dosimetry because of many favorable properties, i. e., simplicity, cheapness and a wide range of sensitivitiy.

  • PDF

A Study on Photon Spectrum in Medical Linear Accelerator Based on MCNPX (MCNPX를 이용한 의료용 선형가속장치의 광자 스펙트럼에 관한 연구)

  • Park, Euntae;Lee, Dongyeon;Ko, Seongjin;Kim, Junghoon;Kang, Sesik
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Medical linear accelerator is used for radiotherapy since it was developed in 1952, the utilization rate is further increased. It is used high energy radiotherapy using the energy of the photon of 6 MeV or more is universal at present, but the creation of the neutron by photonuclear reaction cause a problem that is radiation exposure of patients and operators. Therefore, in this study, to analyze the spectrum of the photon beam of 6 to 24 MV that occurred in the medical linear accelerator using the Monte Carlo code MCNPX, the number of photons of 7.41 MeV or more, which is a neutron production threshold energy of tungsten and average energy. The result of 24 MV in the beginning and the 8 MV was 0.59% of the total number of detected photons and it was founded that the number of photons are increased which are possible to cause the photonuclear reaction.

Radiological Impact Assessment for Radioactive Concrete in Dismantling of the Medical Cyclotron (의료용 사이클로트론 해체 시 발생되는 방사화 콘크리트의 방사선학적 영향평가)

  • Jang, Donggun;Shin, Sanghwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.73-80
    • /
    • 2019
  • Neutrons are generated by the nuclear reaction, which is absorbed into the concrete wall and causes the activation during cyclotron operation. The purpose of this study is to investigate the effect of neutron activation and radiative concrete on concrete type. This experiment used Monte Carlo simulation and RESRAD model. The results of the experiment showed that the higher the content of Fe in concrete, the greater the shielding rate. The effect of $^{56}Fe(n,\;2np)^{54}Mn$ reaction on workers is also increased. However, radioactive nuclides have low activity and have very low impact on workers. Radioactive concrete should be treated as general wastes with less than its self-disposal tolerance level, and it should be recycled to the surface such as road repair rather than landfill to minimize the effect of $^{14}C$.

Radiation Streaming in KNU-1 Reactor Cavity (고리 1호기 원자로 공동에서의 방사선 흐름 현상 해석)

  • Kun-Woo Cho;Chang-Soon Kang
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.27-37
    • /
    • 1986
  • The neutron fluxes and dose rates due to radiation streaming from reactor cavities were evaluated at the KNU-1 reactor pressure vessel (RPY) head flange elevation. To find a suitable cross section data set for the evaluation, a benchmark test was performed for three data sets; DLC-23/CASK, DLC-31/FEWG, and DLC-47/BUGLE. The leakage fluxes from the KNU-1 RPV outer surface were calculated with two different methods: 1-D calculation with ANISN, and 2-D calculation with DOT3.5. The Monte Carlo procedures as embodied in the MORSE-CG code combined with the albedo option were applied to predict the radiation distributions in the cavity region. Finally, the activation analysis of the stud bolts was performed to identify the major activation products.

  • PDF

EFFECT OF NEUTRON AND GAMMA IRRADIATION ON THE GERMINATION OF DIPLOID AND TETRAPLOID RYE SEEDS (중성자 및 감마선의 조사가 이배체 및 사배체 호맥의 종자의 발아 및 성장에 미치는 영향)

  • YIM, Kyong Bin
    • Journal of Plant Biology
    • /
    • v.6 no.3
    • /
    • pp.6-14
    • /
    • 1963
  • YIM, Kyong Bin (Coll. of Agriulture, Seoul National University) Effect of neutron and gamma irradiation on the germination of diploid and tetraploid rye seeds. Kor. Jour. Bot. VI(3):6-14, 1964. Tetraploid rye, Secale cereale 4x, was more tolerant to fast nuetron than diploid rye. Root growth was more suppressed than was seedling height in both diploid and tetraploid rye. A stimmulative effect on the dry weight of the shoot could be observed at very low doses of irradiation. It was the fact that the lower the moisture content of the seeds, the higher the radiosensitivity. Concerning seedling height growth, the effectiveness ratio of N/X equalled about 20.0 in diploid rye and about 18.2 in tettraploid rye, when the 50% dose ratios is used for this quotient calculaiton.

  • PDF

Construction of voxel head phantom and application to BNCT dose calculation (Voxel 머리팬텀 제작 및 붕소중성자포획요법 선량계산에의 응용)

  • Lee, Choon-Sik;Lee, Choon-Ik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • Voxel head phantom for overcoming the limitation of mathematical phantom in depleting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for yokel Monte Carlo calculation. Simple binary yokel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct yokel head phantom. Comparison of doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of yokel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is $30{\mu}g/g$ to $3{\mu}g/g$. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  • PDF