• Title/Summary/Keyword: 중복 분석

Search Result 1,453, Processing Time 0.026 seconds

A Systematic Review of Developmental Coordination Disorders in South Korea: Evaluation and Intervention (국내의 발달성협응장애(DCD) 연구에 관한 체계적 고찰 : 평가와 중재접근 중심으로)

  • Kim, Min Joo;Choi, Jeong-Sil
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.19 no.1
    • /
    • pp.69-82
    • /
    • 2021
  • Objective : This recent work intended to provide basic information for researchers and practitioners related to occupational therapy about Developmental Coordination Disorder (DCD) in South Korea. The previous research of screening DCD and the effects of intervention programs were reviewed. Methods : Peer-reviewed papers relating to DCD and published in Korea from January 1990 to December 2020 were systematically reviewed. The search terms "developmental coordination disorder," "development coordination," and "developmental coordination" were used to identify previous Korean research in this area from three representation database, the Research Information Sharing Service, Korean Studies Information Service System, and Google Scholar. We found a total of 4,878 articles identified through the three search engines and selected seventeen articles for analysis after removing those that corresponded to the overlapping or exclusion criteria. We adopted "the conceptual model" to analyze the selected articles about DCD assessment and intervention. Results : We found that twelve of the 17 studies showed the qualitative level of Level 2 using non-randomized approach between the two groups. The Movement Assessment Battery for Children and its second edition were the most frequently used tools in assessing children for DCD. Among the intervention studies, the eight articles (47%) were adopted a dynamic systems approach; a normative functional skill framework and cognitive neuroscience were each used in 18% of the pieces; and 11% of the articles were applied neurodevelopmental theory. Only one article was used a combination approach of normative functional skill and general abilities. These papers were mainly focused on the movement characteristics of children with DCD and the intervention effect of exercise or sports programs. Conclusion : Most of the reviewed studies investigated the movement characteristics of DCD or explore the effectiveness of particular intervention programs. In the future, it would be useful to investigate the feasibility of different assessment tools and to establish the effectiveness of various interventions used in rehabilitation for better motor performance in children with DCD.

A Comparative Study on the Concept of Light Presented in Elementary School Science Curriculum and Textbooks in Korea, the US, China, and Japan (한국, 미국, 중국, 일본의 초등학교 과학 교육과정과 교과서에 제시된 빛 관련 개념에 관한 비교 연구)

  • Lee, Jiwon;Kim, Jung Bog
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.283-294
    • /
    • 2022
  • Although the concept of light is important in the elementary school curriculum, substantial research suggests that students and teachers have difficulties in understanding it. Therefore, it is necessary to analyze the reasons for these difficulties-whether it is due to the content or due to the presentation method of contents, structure, and expression. The national curriculum and textbooks of Korea, the US, China, and Japan were comparatively analyzed from the following perspectives: 1) key concepts of light, 2) structure of light units in the textbook, 3) materials, light sources, and optics used in light units. Consequently, there were differences between countries in their inclusion of the concept of light in the curriculum. In particular, the Korean curriculum studies the concept of refraction by a convex lens, whereas the concept of light, light source, and vision is not introduced. Furthermore, countries also differed in their structuring of units. The Korean curriculum was presented segmentally by concept rather than structured according to core ideas or perspectives, and the connection between concepts was unclear. In addition, there were differences between the countries in materials, light sources, and optical instruments to explain key concepts. On using light, the US curriculum provides a purpose and uses light to achieve it, and China and Korea understand the concept. It was divided into the method of using the material to deepen. Based on the results of this analysis, the implications for the elementary science curriculum in Korea were derived as follows. First, it is necessary to introduce concepts sequentially and organize them so that the connection between concepts is well expressed. Second, it is necessary to introduce light and light sources as the predominant concepts. Third, it is necessary to include the principle of seeing objects. Fourth, it is necessary to adjust the material and content level of the refraction concept included in the light and lens unit. Fifth, an integrated approach is required because light has a deep connection with various concepts included in the elementary science curriculum.

Analysis of Research on Christian Infant Parents (기독교 영아기 부모 관련 연구 분석)

  • Minjung Kim
    • Journal of Christian Education in Korea
    • /
    • v.77
    • /
    • pp.47-62
    • /
    • 2024
  • Purpose of the study : The purpose of this study was to analyze research on Christian infant parents in terms of research period, research content, and research method, and seek directions for research projects related to Christian infant parents. Research content and methods : For this study, domestic master's and doctoral dissertation published from 1995 to 2023 by the national assembly library and the research information sharing service (RISS) were collected under the categories 'Christianity', 'infant', 'infancy', and 'parent'. A total of 40 studies were extracted by searching with these keywords and excluding redundant studies. In addition, the frequency and percentage were calculated by classifying and analyzing the results into three criteria: research period, research content, and research method. Conclusions and Recommendations : Research on Christian infant parents increased significantly between 2016 and 2020, with 10 studies (25%) conducted during this period, indicating a more active engagement in this area compared to other times. Master's theses accounted for 39 studies (97.5%), while doctoral dissertation comprised 1 study (2.5%), suggesting a predominance of research at the master's level. Regarding the content of the research on Christian infant parents, practice studies accounted for 34 studies (85%), while basic research accounted for 6 studies (15%). Field-related studies such as the development of parental education programs and materials for infants continued to be carried out steadily, but there was a lack of theoretical, philosophical, perceptual, and factual investigation research on Christian infant parents. Methodologically, literature reviews were prevalent, with 27 studies (67.5%), followed by quantitative studies with 10 studies (25%), and qualitative studies with 3 studies (7.5%). Various types of research, including quantitative, qualitative, and literature reviews, were conducted between 2016 and 2020. Based on the research findings, in-depth qualitative studies conducted through observation and interviews, as well as mixed-method studies complementing single studies, should be conducted for a long-term perspective on research involving Christian infant and child parents.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.

Derivation of Digital Music's Ranking Change Through Time Series Clustering (시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류)

  • Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-191
    • /
    • 2020
  • This study focused on digital music, which is the most valuable cultural asset in the modern society and occupies a particularly important position in the flow of the Korean Wave. Digital music was collected based on the "Gaon Chart," a well-established music chart in Korea. Through this, the changes in the ranking of the music that entered the chart for 73 weeks were collected. Afterwards, patterns with similar characteristics were derived through time series cluster analysis. Then, a descriptive analysis was performed on the notable features of each pattern. The research process suggested by this study is as follows. First, in the data collection process, time series data was collected to check the ranking change of digital music. Subsequently, in the data processing stage, the collected data was matched with the rankings over time, and the music title and artist name were processed. Each analysis is then sequentially performed in two stages consisting of exploratory analysis and explanatory analysis. First, the data collection period was limited to the period before 'the music bulk buying phenomenon', a reliability issue related to music ranking in Korea. Specifically, it is 73 weeks starting from December 31, 2017 to January 06, 2018 as the first week, and from May 19, 2019 to May 25, 2019. And the analysis targets were limited to digital music released in Korea. In particular, digital music was collected based on the "Gaon Chart", a well-known music chart in Korea. Unlike private music charts that are being serviced in Korea, Gaon Charts are charts approved by government agencies and have basic reliability. Therefore, it can be considered that it has more public confidence than the ranking information provided by other services. The contents of the collected data are as follows. Data on the period and ranking, the name of the music, the name of the artist, the name of the album, the Gaon index, the production company, and the distribution company were collected for the music that entered the top 100 on the music chart within the collection period. Through data collection, 7,300 music, which were included in the top 100 on the music chart, were identified for a total of 73 weeks. On the other hand, in the case of digital music, since the cases included in the music chart for more than two weeks are frequent, the duplication of music is removed through the pre-processing process. For duplicate music, the number and location of the duplicated music were checked through the duplicate check function, and then deleted to form data for analysis. Through this, a list of 742 unique music for analysis among the 7,300-music data in advance was secured. A total of 742 songs were secured through previous data collection and pre-processing. In addition, a total of 16 patterns were derived through time series cluster analysis on the ranking change. Based on the patterns derived after that, two representative patterns were identified: 'Steady Seller' and 'One-Hit Wonder'. Furthermore, the two patterns were subdivided into five patterns in consideration of the survival period of the music and the music ranking. The important characteristics of each pattern are as follows. First, the artist's superstar effect and bandwagon effect were strong in the one-hit wonder-type pattern. Therefore, when consumers choose a digital music, they are strongly influenced by the superstar effect and the bandwagon effect. Second, through the Steady Seller pattern, we confirmed the music that have been chosen by consumers for a very long time. In addition, we checked the patterns of the most selected music through consumer needs. Contrary to popular belief, the steady seller: mid-term pattern, not the one-hit wonder pattern, received the most choices from consumers. Particularly noteworthy is that the 'Climbing the Chart' phenomenon, which is contrary to the existing pattern, was confirmed through the steady-seller pattern. This study focuses on the change in the ranking of music over time, a field that has been relatively alienated centering on digital music. In addition, a new approach to music research was attempted by subdividing the pattern of ranking change rather than predicting the success and ranking of music.

A Study on the Tree Surgery Problem and Protection Measures in Monumental Old Trees (천연기념물 노거수 외과수술 문제점 및 보존 관리방안에 관한 연구)

  • Jung, Jong Soo
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.122-142
    • /
    • 2009
  • This study explored all domestic and international theories for maintenance and health enhancement of an old and big tree, and carried out the anatomical survey of the operation part of the tree toward he current status of domestic surgery and the perception survey of an expert group, and drew out following conclusion through the process of suggesting its reform plan. First, as a result of analyzing the correlation of the 67 subject trees with their ages, growth status. surroundings, it revealed that they were closely related to positional characteristic, damage size, whereas were little related to materials by fillers. Second, the size of the affected part was the most frequent at the bough sheared part under $0.09m^2$, and the hollow size by position(part) was the biggest at 'root + stem' starting from the behind of the main root and stem As a result of analyzing the correlation, the same result was elicited at the group with low correlation. Third, the problem was serious in charging the fillers (especially urethane) in the big hollow or exposed root produced at the behind of the root and stem part, or surface-processing it. The benefit by charging the hollow part was analyzed as not so much. Fourth, the surface-processing of fillers currently used (artificial bark) is mainly 'epoxy+woven fabric+cork', but it is not flexible, so it has brought forth problems of frequent cracks and cracked surface at the joint part with the treetextured part. Fifth, the correlation with the external status of the operated part was very high with the closeness, surface condition, formation of adhesive tissue and internal survey result. Sixth, the most influential thing on flushing by the wrong management of an old and big tree was banking, and a wrong pruning was the source of the ground part damage. In pruning a small bough can easily recover itself from its damage as its formation of adhesive tissue when it is cut by a standard method. Seventh, the parameters affecting the times of related business handling of an old and big tree are 'the need of the conscious reform of the manager and related business'. Eighth, a reform plan in an institutional aspect can include the arrangement of the law and organization of the old and big tree management and preservation at an institutional aspect. This study for preparing a reform plan through the status survey of the designated old and big tree, has a limit inducing a reform plan based on the status survey through individual research, and a weak point suggesting grounds by any statistical data. This can be complemented by subsequent studies.

Increasing Accuracy of Classifying Useful Reviews by Removing Neutral Terms (중립도 기반 선택적 단어 제거를 통한 유용 리뷰 분류 정확도 향상 방안)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.129-142
    • /
    • 2016
  • Customer product reviews have become one of the important factors for purchase decision makings. Customers believe that reviews written by others who have already had an experience with the product offer more reliable information than that provided by sellers. However, there are too many products and reviews, the advantage of e-commerce can be overwhelmed by increasing search costs. Reading all of the reviews to find out the pros and cons of a certain product can be exhausting. To help users find the most useful information about products without much difficulty, e-commerce companies try to provide various ways for customers to write and rate product reviews. To assist potential customers, online stores have devised various ways to provide useful customer reviews. Different methods have been developed to classify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most shopping websites provide customer reviews and offer the following information: the average preference of a product, the number of customers who have participated in preference voting, and preference distribution. Most information on the helpfulness of product reviews is collected through a voting system. Amazon.com asks customers whether a review on a certain product is helpful, and it places the most helpful favorable and the most helpful critical review at the top of the list of product reviews. Some companies also predict the usefulness of a review based on certain attributes including length, author(s), and the words used, publishing only reviews that are likely to be useful. Text mining approaches have been used for classifying useful reviews in advance. To apply a text mining approach based on all reviews for a product, we need to build a term-document matrix. We have to extract all words from reviews and build a matrix with the number of occurrences of a term in a review. Since there are many reviews, the size of term-document matrix is so large. It caused difficulties to apply text mining algorithms with the large term-document matrix. Thus, researchers need to delete some terms in terms of sparsity since sparse words have little effects on classifications or predictions. The purpose of this study is to suggest a better way of building term-document matrix by deleting useless terms for review classification. In this study, we propose neutrality index to select words to be deleted. Many words still appear in both classifications - useful and not useful - and these words have little or negative effects on classification performances. Thus, we defined these words as neutral terms and deleted neutral terms which are appeared in both classifications similarly. After deleting sparse words, we selected words to be deleted in terms of neutrality. We tested our approach with Amazon.com's review data from five different product categories: Cellphones & Accessories, Movies & TV program, Automotive, CDs & Vinyl, Clothing, Shoes & Jewelry. We used reviews which got greater than four votes by users and 60% of the ratio of useful votes among total votes is the threshold to classify useful and not-useful reviews. We randomly selected 1,500 useful reviews and 1,500 not-useful reviews for each product category. And then we applied Information Gain and Support Vector Machine algorithms to classify the reviews and compared the classification performances in terms of precision, recall, and F-measure. Though the performances vary according to product categories and data sets, deleting terms with sparsity and neutrality showed the best performances in terms of F-measure for the two classification algorithms. However, deleting terms with sparsity only showed the best performances in terms of Recall for Information Gain and using all terms showed the best performances in terms of precision for SVM. Thus, it needs to be careful for selecting term deleting methods and classification algorithms based on data sets.

Interpretation on the Formative Design for Garden Pond of Hwaseol-dang in Muan (무안 화설당(花雪堂) 지당(池塘)의 조형디자인적 해석(解釋))

  • Rho, Jae-Hyun;Lee, Hyun-Woo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.2
    • /
    • pp.1-11
    • /
    • 2015
  • This study sheds light on a pond design process which is a core facility of Hwaseol-dang in Muan, the Jeonnam. The plasticity of the pond was analyzed and interpreted for the design process using methods such as "literature search, interview, site visits, aerial pictures, aerial photographing, drawing figures of configuration plane via measurements, internet search, etc.", to trace the developing process of the design and the implications therein. The study results being centered on the developing process of the pond design are summarized herein below. The position of the Hwaseol-dang, being formed on a low hill having low competence as a place for a pavilion, draws more attention regarding its implications from the aspect of inner design. The pond Hwaseol-dang is in a rectangular shape of 1 : 1.2 ratio, in which the depth is a bit higher on the pond edge of the Hwaseol-dang thus being slanted, and Crape Myrtle, which is not known whether introduced during the formation of the pond, is cultivated on the island in the center widespread toward the southeast region. The planar design of the pond is interpreted as "rectangular pond" but it has a smooth half-moon shape where a part is excluded to remove edge. In particular, the three islands in rectangular pond, due to the narrow area, put one island and two half-moon-shaped islands in juxtaposition, and thus, although only being one island, resultantly exhibits the existence effect of proliferated three islands. This is allegedly due to the intentional formation aiming at the effect of hybrid while minimizing the overlap due to merging and adding from the aspect of constituting a design. Furthermore, the pond Hwaseol-dang is extended northwest along with Hwaseol-dang, and also the island in the center is thought to additionally have one or two, but the widespread phenomenon of the island in the center appears to consider the effect of "sit view on the floor of the pavilion of Hwaseol-dang". Considering that even a few examples of ponds having the three islands among the private house gardens in the nation are all curved ponds, the characteristics of the rectangular Hwaseol-dang pond establishing the garden effect of the three islands by modifying the one island in rectangular pond is highly notable. Considering that the three islands of "Yeongju, Bangjang, and Bongrae" is the original shape of the pond garden gestating Taoist ideology, as a symbolic design of a pond, it is regarded as the characteristics of the pond shape in Jeonnam area, and the so-called three treasures "Hwaseol-dang, Camellia, and oddly shaped stones, etc." are concentrated as the symbolism of Hwaseol-dang pond.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.