• Title/Summary/Keyword: 중등기하

Search Result 37, Processing Time 0.019 seconds

A Study on the Comparision of Middle School Mathematics Textbooks in Korea and Germany - Focused on the Area of Geometry - (한국과 독일의 중등학교 수학교과서 비교 연구 II - 중학교 기하 영역을 중심으로 -)

  • Jung, Hwan-Ok;Lau, Jeung-Hark
    • The Mathematical Education
    • /
    • v.44 no.1 s.108
    • /
    • pp.1-14
    • /
    • 2005
  • This study analyzed the differences in the contents as well as in the methods of development and presentation of learning contents in Korean and German mathematics textbooks for middle school students. For the research we investigated only the area of geometry, and in particular this study performed in-depth analysis concerning 4 subjects; namely congruences of triangles, special points in a triangle, similarity of figures and the theorem of Pythagoras.

  • PDF

종이접기의 대수학적 의미와 교수학적 활용

  • Sin, Hyeon-Yong;Han, In-Gi;Seo, Bong-Geon;Choe, Seon-Hui
    • Communications of Mathematical Education
    • /
    • v.13 no.2
    • /
    • pp.457-475
    • /
    • 2002
  • 수학사를 통해 볼 때 눈금 없는 자와 컴퍼스를 이용한 작도 가능성의 문제는 여러 면에서 의미가 있었다. 종이 접기는 수학과는 무관하게 나름대로 많은 흥미를 끌어 왔다. 그러나 종이 접기가 기하학적 작도와 흥미 있는 관련이 있음이 알려지면서 수학적으로도 연구되었고 더 나아가 수학 학습에의 유의미한 활용 가능성이 제안되었다. 본 글에서는 종이 접기에서 괄목할 만한 수학적 성질을 고전적인 작도 가능성의 문제와 다항식의 거듭 제곱근에 의한 가해성 등과 관련하여 고찰한다. 또, 초 ${\cdot}$ 중등 학교에서 활용 가능한 가상의 수업 프로토콜도 제시한다.

  • PDF

Development and Application of Learning Materials of the Construction Unit in 7-B Grade Based on Clairaut's $El{\`{e}}ments$ de $G{\`{e}}om{\`{e}}trie$ (Clairaut의 <기하학 원론>에 근거한 7-나 단계 작도단원의 자료 개발과 적용에 관한 연구)

  • Park, Myeong-Hee;Shin, Kyung-Hee
    • Journal for History of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.117-132
    • /
    • 2006
  • For a meaningful learning of the Construction Unit in 7-B Grade, this study aims to develop teaming materials on the basis of Clairaut's $El{\`{e}}ments$ de $G{\`{e}}om{\`{e}}trie$, which is grounded on a natural generation derived from the history of mathematics and emphasizes students' inquiry activity and reflective thinking activity, and to analyze the characteristics of learning process shown in classes which use the application of teaming materials. Six students were sampled by gender and performance and an interpretive case study was conducted. Construction was specified so as to be consciously executed with emphasis on an analysis to enable one to discover construction techniques for oneself from a standpoint of problem solving, a justification to reveal the validity of construction, and a step of reflection to generalize the results of construction.

  • PDF

컴퓨터를 통한 수학적 사고력 신장의 가능성 모색

  • Jo, Han-Hyeok;An, Jun-Hwa;U, Hye-Yeong
    • Communications of Mathematical Education
    • /
    • v.14
    • /
    • pp.197-215
    • /
    • 2001
  • 최근 수학적 사고력 연구가 구체적 수학내용에 기반한 활동과 조작에 대한 연구보다는 활동이나 조작을 통한 결과로 수학적 사고력에 접근하는 일회성 연구로 이루어지는 경향이 있다. 본고에서는 교육 내용을 선정하기 위해 학교수학에서 아동들이 어떤 수학적 사고를 하는데 장애을 겪는지에 주목하여, 이러한 장애를 극복하는 것을 통해 수학적 사고력의 신장을 생각해보고자 하였다. 이에 대수에서는 문자도입에 따른 추상적 상징의 수용과 이용부분에서, 기하에서는 논증기하의 증명도입과정에서 형식적, 연역적 사고 시작으로 아동이 수학적 사고에 어려움을 겪는다는 사살에 주목하였다. 특히 논증 기하의 연역적, 형식적 증명은 논리와 추론이 바탕이 되어야 한다. 그런데 논리와 추론은 고등학교 1학년과정 집합과 명제부분에 들어있어 아동은 논리와 추론에 대한 어떤 경험도, 교육도 받지 않은 상태에서 증명을 하게 된다. 이에 교육 내용으로 수학적 사고력을 신장을 위해 가장 필요한 내용이 논증 기하가 도입되기 이전에 초등학교 5,6학년 아동을 대상으로한 논리와 추론교육이라고 본다. 또한 교육 방법으로는 컴퓨터를 이용한 교육공학적 접근을 하고자 하였다. 교육공학적 접근이 적극 권장되는 교육적 현실과 정규교육과정에서 이를 받아들일만한 시간적 여유가 없음을 감안하여, 교과 내용과 연계된 컴퓨터 교육을 제안하는 바이다. 이에 논리 및 추론 교육은 컴퓨터 교육으로 초등학교의 특기적성 시간이나 정규수업 시간에 이용할 것을 제안한다. 논리와 추론교육을 위해 무엇을 어떻게 가르칠 것인가에 대한 답으로 논리와 추론교육에 적합한 수학적 내용으로 크게 이산수학과 중등 기하의 초등화하여 탐구하도록 하는 내용을, 교육 방법 측면에서는 논리와 추론 교육을 위한 LOGO 기반 마이크로월드를 설계, 이용하여 수학적 사고력을 신장시키고자 한다. 여기까지가 수학적 사고력을 위한 가능성을 모색한 것이라면 후속연구로 이러한 가능성을 실험연구로 검증하고자 한다.

  • PDF

The Generalization of the Area of Internal Triangles for the GSP Use of Mathematically Gifted Students (중등 영재학생들의 GSP를 활용한 내분삼각형 넓이의 일반화)

  • Lee, Heon-Soo;Lee, Kwang-Ho
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.3
    • /
    • pp.565-584
    • /
    • 2012
  • This study investigates how the GSP helps gifted and talented students understand geometric principles and concepts during the inquiry process in the generalization of the internal triangle, and how the students logically proceeded to visualize the content during the process of generalization. Four mathematically gifted students were chosen for the study. They investigated the pattern between the area of the original triangle and the area of the internal triangle with the ratio of each sides on m:n respectively. Digital audio, video and written data were collected and analyzed. From the analysis the researcher found four results. First, the visualization used the GSP helps the students to understand the geometric principles and concepts intuitively. Second, the GSP helps the students to develop their inductive reasoning skills by proving the various cases. Third, the lessons used GSP increases interest in apathetic students and improves their mathematical communication and self-efficiency.

  • PDF

Process of Visualization in 2D-Geometric Problem Solving among Secondary School Students (중등 기하문제 해결에서 시각화 과정)

  • Ryu, Hyun-Ah;Chang, Kyung-Yoon
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.1
    • /
    • pp.143-161
    • /
    • 2009
  • This study was designed to gain insights into students' visualization process in geometric problem solving. The visualization model for analysing visual process for geometric problem solving was developed on the base of Duval's study. The subjects of this research are two Grade 9 students and six Grade 10 students. They were given 2D-geometric problems. Their written solutions were analyzed problem is research depicted characteristics of process of visualization of individually. The findings on the students' geometric problem solving process are as follows: In geometric problem solving, visualization provided a significant insight by improving the students' figural apprehension. In particular, the discoursive apprehension and the operative apprehension contributed to recognize relation between the constituent of figures and grasp structure of figure.

  • PDF

An Exploratory Study with Grounded Theory on Secondary Mathematics Teachers' Difficulties of Technology in Geometry Class (기하 수업에서 중등 수학교사가 경험한 공학도구 사용의 어려움에 대한 근거이론적 탐색)

  • Jeon, Soo Kyung;Cho, Cheong-Soo
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.387-407
    • /
    • 2014
  • This study investigeted secondary math teachers' difficulties of technology in geometry class with grounded theory by Strauss and Corbin. 178 secondary math teachers attending the professional development program on technology-based geometry teaching at eight locations in January 2014, participated in this study with informed consents. Data was collected with an open-ended questionnaire survey. In line with grounded theory, open, axial and selective coding were applied to data analysis. According to the results of this study, teachers were found to experience resistance in using technology due to new learning and changes, with knowledge and awareness of technology effectively interacting to lessen such resistance. In using technology, teachers were found to go through the 'access-resistance-unaccepted use-acceptance' stages. Teachers having difficulties in using technology included the following four types: 'inaccessible, denial of acceptance, discontinuation of use, and acceptance 'These findings suggest novel perspectives towards teachers having difficulties in using technology, providing implications for teachers' professional development.

  • PDF

Teaching Geometry Proof with focus on the Analysis (분석법을 중심으로 한 기하 증명 지도에 대한 연구)

  • Na, Gwi-Soo
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.2
    • /
    • pp.185-206
    • /
    • 2009
  • In the study, I conducted the teaching experiment designed to instruct proof to four 7th grade students by utilizing the analysis method. As the results of this study I could identified that it is effective to teach and learn to find proof methods using the analysis. The results of the study showed that four 7th grade students succeeded in finding the proof methods by utilizing the analysis and representing the proof after 15 hours of the teaching experiment. In addition to the difficulties that students faced in learning proof utilizing the analysis were related to the search for the light conditions for triangles to be congruent, symbolic representation of the proof methods, reinterpretation of drawings given in the proof problems.

  • PDF

A study of representing activities of preservice secondary mathematics teachers in 3D geometric thinking and spatial reasoning (3차원 기하 사고와 공간적 추론에서 예비 중등 수학교사의 표상활동에 관한 연구)

  • Lee, Yu Bin;Cho, Cheong Soo
    • The Mathematical Education
    • /
    • v.53 no.2
    • /
    • pp.275-290
    • /
    • 2014
  • This study investigated the types of the 3D geometric thinking and spatial reasoning through the observation of the 2D representing activities for representing the 3D geometrical objects with preservice secondary mathematics teachers. For this purpose, the 43 sophomoric students in college of education were divided into 10 groups and observed their group task performance on the basis of the representation they used. Observed processes were all recorded and the participants were interviewed based on the task. As a result, the role of physical object that becoming the object of geometric thinking and spatial reasoning, and diverse strategies and phenomena of the process that representing the 3D geometric figures in 2D were discovered. Furthermore, these processes of representing were assumed to be influenced by experience and study practice of students, and various forms of representing process were also discovered in the process of small group activities.

A Study on Possibility of Introducing Descartes' Theorem to Mathematically Gifted Students through Analogical Reasoning (영재교육에서 유추를 통한 데카르트 정리의 도입가능성 고찰)

  • Choi, Nam-Kwang;Lew, Hee-Chan
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.4
    • /
    • pp.479-491
    • /
    • 2009
  • This paper researches the possibility of introducing Descartes' theorem to mathematically gifted students. Not only is Descartes' theorem logically equivalent to Euler's theorem but is hierarchically connected with Gauss-Bonnet theorem which is the core concept on differential geometry. It is possible to teach mathematically gifted students Descartes' theorem by generalizing mathematical property in solid geometry through analogical reasoning, that is, so in a polyhedrons the sum of the deficient angles is $720^\circ$ as in an polygon the sum of the exterior angles is $360^\circ$. This study introduces an alternative method of instruction that we enable mathematically gifted students to reinvent Descartes' theorem through analogical reasoning instead of deductive reasoning.

  • PDF