• 제목/요약/키워드: 중기예보

검색결과 16건 처리시간 0.023초

중기예보를 이용한 태양광 일사량 예측 연구 (A study on solar radiation prediction using medium-range weather forecasts)

  • 박수진;김효정;김삼용
    • 응용통계연구
    • /
    • 제36권1호
    • /
    • pp.49-62
    • /
    • 2023
  • 급속적으로 비중이 증가하고 있는 태양광 에너지는 지속적인 개발 및 투자가 이루어지고 있다. 신재생에너지 정책인 그린뉴딜과 가정용 태양광 패널의 설치가 증가함에 따라 국내 태양광 에너지 보급이 점차 확대되어 그에 맞추어 발전량의 정확한 수요 예측 연구가 활발하게 진행되고 있는 시점이다. 또한, 일사량 예측이 발전량 수요 예측에 가장 영향을 미치는 요소로 작용하고 있다는 점에서 일사량 예측의 중요성을 파악하였다. 덧붙여, 본 연구는 선행 연구들에서 사용되지 않은 중기예보 기상 데이터를 활용하여 일사량 예측을 하고자 하였다는 점에서 가장 큰 차이점을 확인할 수 있다. 본 논문에서는 서울, 인천, 수원, 춘천, 대구, 대전의 총 여섯 지역의 태양광 일사량 예측을 위하여 다중선형회귀모형, KNN, Random Forest 그리고 SVR 모형과 클러스터링 기법인 K-means 기법을 결합한 후, 클러스터별 확률밀도함수를 계산하여 시간별 일사량 예측을 진행하고자 하였다. 중기예보 데이터를 사용하기 전, 모형 예측 결과를 비교하기 위한 지표로서 MAE (mean absolute error)와 RMSE (root mean squared error)를 사용하였다. 데이터는 2017년 3월 1일부터 2022년 2월 28일까지의 시간별 원 관측 데이터를 중기예보 데이터 양식에 맞추어 일별 데이터로 변환하였다. 모형의 예측 성능 비교 결과, Random Forest로 일별 일사량을 예측한 후, K-means 클러스터링으로 기후요인이 유사한 날짜들을 분류한 뒤 클러스터별 일사량의 확률밀도함수를 계산하여 시간별 일사량 예측값을 나타낸 방법이 가장 우수한 성능을 보였다. 또한 이 방법론을 이용하여 중기예보 데이터에 모형 적합 후, 예측 결과를 확인하였을 때, 일자별로 예측 오류가 상승하는 것을 확인할 수 있었다. 이는 중기예보 기상데이터의 예측 오류로 인한 것으로 보인다. 향후 연구에서는 중기예보 데이터에서 활용할 수 있는 기상요인 중, 강수 여부와 같은 외생 변수를 추가하거나 시계열 클러스터링 기법을 적용한 연구가 이루어져야할 것으로 보인다.

기계학습 기반의 산불위험 중기예보 모델 개발 (Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning)

  • 박수민;손보경;임정호;강유진;권춘근;김성용
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.781-791
    • /
    • 2022
  • 산불로 인한 피해를 최소화하기 위해서 산불위험 예보 정보를 제공하는 것은 필수적이다. 따라서 본 연구에서는 우리나라를 대상으로 기계학습 기반의 산불위험 중기예보(1일 후부터 7일 후까지) 모델을 개발하였다. Global Data Assimilation and Prediction System (GDAPS)의 기상예보 자료와 기 개발된 산불위험지수(Fire Risk Index, FRI)의 과거 및 현재 정보, 그리고 기타 환경요소(i.e., 고도, 산불다발지수, 가뭄지수)의 현재 정보를 반영하여 모델을 개발하였다. 본 연구에서는 실시간 학습을 통해 모델을 개발하였으며, 효율적인 모델 개발을 목적으로 과거 산불위험지수와 가뭄지수의 유무를 고려하여 세가지 경우(Scheme 1: 과거 산불위험지수 및 가뭄지수, Scheme 2: 과거 산불위험지수, Scheme 3: 과거 산불위험지수 변화 추세 및 가뭄지수)로 연구를 수행하였다. 본 연구에서 개발된 산불위험예보모델은 예보기간에 상관없이 높은 정확도(피어슨 상관계수(Pearson correlation) >0.8, relative root mean square error <10%)를 나타냈으며, 실제 산불 발생 건에 대해서도 유의미한 결과를 보였다. 과거 산불위험지수의 추세보다는 산불위험지수 값 자체를 입력변수로 사용하는 것이 높은 정확도를 보였으며, 가뭄지수 사용과 관계없이 좋은 결과를 나타냈다.

서남권 해상풍력단지 유지보수 활동을 위한 중기 파고 예보 개선 (Improvement of Wave Height Mid-term Forecast for Maintenance Activities in Southwest Offshore Wind Farm)

  • 김지영;이호엽;서인선;박다정;강금석
    • 풍력에너지저널
    • /
    • 제14권3호
    • /
    • pp.25-33
    • /
    • 2023
  • In order to secure the safety of increasing offshore activities such as offshore wind farm maintenance and fishing, IMPACT, a mid-term marine weather forecasting system, was established by predicting marine weather up to 7 days in advance. Forecast data from the Korea Hydrographic and Oceanographic Agency (KHOA), which provides the most reliable marine meteorological service in Korea, was used, but wind speed and wave height forecast errors increased as the leading forecast period increased, so improvement of the accuracy of the model results was needed. The Model Output Statistics (MOS) method, a post-correction method using statistical machine learning, was applied to improve the prediction accuracy of wave height, which is an important factor in forecasting the risk of marine activities. Compared with the observed data, the wave height prediction results by the model before correction for 6 to 7 days ahead showed an RMSE of 0.692 m and R of 0.591, and there was a tendency to underestimate high waves. After correction with the MOS technique, RMSE was 0.554 m and R was 0.732, confirming that accuracy was significantly improved.

강수의 특성을 고려한 기상 예측자료의 보정 기법 개발 (Development of Correction Method for Weather Forecast Data considering Characteristics Rainfall)

  • 이선정;윤성심;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.33-33
    • /
    • 2011
  • 현재 우리나라 기상청에서는 단기, 중기 및 장기 예보자료를 생산하고 있으나, 이들 자료는 단순히 일기 예보에 치중되어 생산되고 있어 강우-유출해석에 직접 적용하기에는 시 공간 해상도가 크고 정량적 강수예측의 정확도가 미흡하다. 이에 기상 및 수자원분야에서는 정확도 개선을 위해서 관측강우와 예측강우의 비교 분석을 통해 편차를 산정하여 예측강수를 보정하는 기법을 적용하고 있다. 다만, 기존의 편차보정방법은 보정인자로 강수량만을 고려하기 때문에 정확도 개선에는 한계가 존재한다. 따라서 본 연구에서는 수자원분야의 수치예보자료의 정확도를 향상시키기 위해 규모, 발생영역에 대한 강수의 특성을 고려한 강수예측자료의 편차보정 방법을 제안하고 이를 강우-유출모델에 적용하여 개선정도를 평가하고자 한다. 이에 적용유역을 춘천댐상류유역으로 선정하고 국내 기상청의 RDAPS(Regional Data Assimilation and Prediction System)수치예보자료, 지점강우자료, radar자료의 수문기상자료와 지형자료를 수집하였다. 화천, 평화의 댐 일부 미계측유역의 관측자료로 radar자료를 이용하였다. 이상의 자료를 토대로 강우강도 및 규모, 영향범위를 고려한 예측강우의 편차를 산정하여 RDAPS 수치예보자료의 정확도를 개선하고 평가하였다. 이는 해당 유역뿐만 아니라 주변 유역의 정보를 이용하여 예측강우의 발생위치에 대한 오차를 고려한 방법으로, 각 영역별로 예측강우의 편차보정계수를 산정하여 적용하였다. 또한, 이전시간대의 강우 편차에 대한 오차를 줄이기 위해 정규분포방법을 이용한 Ensemble 편차보정계수를 산정하고 최근 생산된 수치예보자료에 적용하여 확률예측강우를 산정하였다.

  • PDF

확률장기예보GloSea5의 물관리 활용을 위한 검증 (Verification for applied water management technology of Global Seasonal forecasting system version 5)

  • 문수진;황진;서애숙;음형일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.236-236
    • /
    • 2016
  • 현재 댐운영 계획 수립 시 매월 유지해야 하는 저수량의 범위를 나타낸 기준수위가 사용되고 있으며 매년 홍수기 말에 현재의 수문 상황과 장래의 전망을 통한 시기별 연간, 월간 댐운영 계획을 수립하고 있다. 물관리의 이수측면에서 댐수위 운영계획 수립과 홍수기 운영목표 수위를 결정하는데 활용하기 위해서는 계절단위, 연단위의 기상정보가 필요하다. 본 연구에서는 기상청에서 운영하고 제공하는 전지구 계절예측시스템 GloSea5(Global Seasonal forecasting system version 5)자료를 활용하여 금강유역에 적용하고자 하였다. GloSea5는 전지구계절예측시스템으로 대기(UM), 지면(JULES), 해양(NEMO), 해빙(CICE)모델이 서로 결합되어 하나의 시스템으로 구성되어 있으며 공간 수평해상도는 N216($0.83^{\circ}{\times}0.56^{\circ}$)으로 중위도에서 약60km이다. Hindcast자료는 유럽중기예보센터(ECMWF)에서 생산된 ERA-Interim 재분석장을 대기 모델의 초기장으로 사용하며 기간은 1996~2009년의 총 14년이다. 예보자료의 검증은 예보의 질을 결정하는 과정으로 Brier Skill Score (BSS), Reliability Diagrams, Relative Operating, Characteristics (ROC)등을 통해 정확성과 오차에 의한 예보의 성능을 검증하였다. 또한 Glosea5의 통계적 상세화를 수행하여 다양한 변수가 갖는 계통적인 지역 오차를 보정함으로써 자료의 신뢰도를 향상시키고자 하였으며 이는 이후 수문모델과의 연계 시 보다 정확하고 효율적인 댐운영에 활용할 수 있는 기후예측정보를 제공할 수 있을 것으로 판단된다.

  • PDF

항해지원을 위한 해양환경정보 실시간 예보시스템 개발 (Development of Real-Time Forecasting System of Marine Environmental Information for Ship Routing)

  • 홍기용;신승호;송무석
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제8권1호
    • /
    • pp.46-52
    • /
    • 2005
  • 대양을 운항하는 선박의 최적 항로계획 수립에 중요한 해양환경정보를 실시간으로 예보하는 시스템(MEIS)을 개발하였다. 예보정보는 위성관측 대양환경 자료를 기반으로 유럽중기기후예보센터가 처리한 실시간 자료를 바탕으로 하며, 장기 관측자료 데이터베이스에 근거한 통계적 정보와 함께 제공된다. MEIS시스템은 육상 기지국에 설치되어 해양환경정보를 취득하고 처리하는 육상자료처리시스템(MEIS-Center)과 선박에 탑재되어 가공된 해양환경정보를 화상으로 구현하고 최적항로 선정을 돕는 선박탑재화상구현시스템(MEIS-Ship)으로 구성되며, 운항중인 선박과 육상기지국간의 정보 송수신을 위한 위성통신 시스템을 활용한다. 해양환경 요소는 바람, 파랑, 기압, 폭풍을 포함하며, 바람은 풍향과 풍속 정보를 제공하고, 파랑은 너울과 풍파로 구분하여 파고, 파향, 파주기 정보를 제공할 수 있다. 실시간 정보는 0.5°해상도로 5시간 간격의 10일 예보치가 매일 제공되며, 통계적 정보는 1.5° 해상도의 15년 관측자료를 이용하여 월평균 및 재현주기별 최대값이 산정된다. MEIS-Ship은 항로 시뮬레이션 기능을 제공하며, 설정된 항로에 대해 예보 및 통계적 해양환경정보를 그림 또는 표의 형태로 제공한다. MEIS는 예정 항로상의 정확한 실시간 해양환경 예보를 제공하므로 선박운항자가 항로의 위험도와 운항경제성을 고려하여 최적 항로를 선정하는 것이 가능하다.

  • PDF

우리나라 근해구역에 있어서의 월별 바람분포의 기후학적 특성 (Climatological Characteristics of Monthly Wind Distribution in a Greater Coasting Area of Korea)

  • 설동일
    • 해양환경안전학회지
    • /
    • 제12권3호
    • /
    • pp.185-192
    • /
    • 2006
  • 풍향 풍속 분포는 해파의 형성 및 발달과 밀접히 관련되어 있어 선박의 안전 운항에 있어서 매우 중요하다. 이 연구에서는 11년간(1985-1995년)의 ECMWF(유럽중기예보센터) 객관해석 자료를 이용하여 항행구역상 근해구역에서의 기후학적인 바람분포 특성을 월별로 조사, 분석하였다. 한후기인 10월에서 3월까지의 풍향분포는 거의 비슷하며, 1월은 풍속이 가장 강하다 북위 30도 이북의 북서 내지 서북서풍과 대만해협 및 남중국해의 북동풍은 지속적이고 매우 강한 특성을 보인다. 6-8월의 풍향분포는 거의 유사하며 남중국해에서의 남서 내지 남남서풍은 강하고, 남반구에서는 강한 남동무역풍이 존재한다 4월, 5월 및 9월은 전반적으로 약한 풍속분포를 보인다

  • PDF

분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측 (High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS)

  • 김소현;김보미;이가림;이예원;노성진
    • 한국수자원학회논문집
    • /
    • 제57권5호
    • /
    • pp.333-346
    • /
    • 2024
  • 수량과 수질 및 수생태를 동시에 고려한 수자원 관리를 위해서는 신뢰도 높은 중기 유량 예측 기술이 필수적이다. 이를 위해서는 기상자료의 특성에 대한 이해와 더불어, 시공간 해상도가 낮은 기상예측 정보를 고해상도 분포형 수문모형에서 효과적으로 활용하는 기술이 중요하다. 본 연구에서는 분포형 수문모형 WRF-Hydro와 선행시간 288시간까지의 기상정보를 제공하는 Global Data Assimilation and Prediction System (GDAPS)를 활용해 고해상도 중기 유량 예측을 수행하고 적용성을 검토하였다. 이를 위해 대상 유역인 낙동강 지류 금호강 유역에 대해 100 m 공간해상도의 WRF-Hydro모형을 구축하고 기상지상관측자료 Automatic Weather Stations (AWS)& Automated Synoptic Observing Systems (ASOS), 기상수치예보모형 GDAPS, 기상재분석자료 Global Land Data Assimilation System (GLDAS)를 입력자료로 적용한 유량 예측 모의 결과를 비교하였다. 2020~2022년 기간 3개의 강우사상에 대해 유역 평균 누적 강우량을 분석 결과, AWS&ASOS대비 GDAPS는 36%~234%, GLDAS 재분석자료는 80%~153% 범위의 과소 및 과대 산정되었음을 확인하였다. AWS&ASOS입력자료로 한 유량 예측 결과는 KGE, NSE지표가 유역 말단 강창교 지점 기준 0.6이상이었으나, GDAPS 기반 유량 모의는 강우 사상에 따라 KGE 값이 0.871~-0.131로 큰 변동성이 확인되었다. 한편, 첨두 유량 오차는 GDAPS가 GLDAS보다 크거나 비슷했지만, 첨두 홍수 발생시간의 오차는 AWS&ASOS, GDAPS, GLDAS가 각각 평균 3.7시간, 8.4시간, 70.1시간으로, 첨두 발생시간 측면에서는 GDAPS의 오차가 GLDAS보다 적었다. GDAPS를 입력자료로 한 WRF-Hydro 고해상도 중기 유량 예측은 첨두 유량의 불확실성은 크지만, 첨두 유량 발생시점에 대한 정확도는 상대적으로 높아 수자원 시설 운영에 효과적으로 활용될 수 있을 것으로 판단된다.

확률론적 중장기 댐 유입량 예측 (II) 앙상블 댐 유입량 예측을 위한 GDAPS 활용 (Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (II) Use of GDAPS for Ensemble Reservoir Inflow Forecasts)

  • 김진훈;배덕효
    • 한국수자원학회논문집
    • /
    • 제39권3호
    • /
    • pp.275-288
    • /
    • 2006
  • 본 연구에서는 GDAPS(T213) 중기 기상 수치예보 자료를 활용한 ESP (Ensemble Streamflow Prediction) 기법을 개발하여 미래에 발생할 수 있는 댐 유입량의 중장기적 확률예측을 위해 초과 확률구간별 댐 유입량을 예측하고 RPSS 검증기법으로 예측결과의 정확도를 분석하였다. 개발된 ESP시스템을 적용한 결과 일단위 개념의 확률예보는 높은 불확실성을 내포할 수 있고, 중장기 확률예보에 초점을 맞추어 1, 3, 7일 등의 예측시간 해상도에 대한 ESP정확도의 민감도를 분석한 결과 예측시간 해상도 간격이 증가할수록 예측결과의 불확실성이 감소하면서 그 정확도가 전반적으로 증가함을 살펴볼 수 있었다. 이러한 결과를 바탕으로 GDAPS 자료를 활용한 1주 단위의 한달(28일)예보를 수행한 ESP 결과는 각 초과 확률구간 분포의 적절한 증가 및 감소로 인하여 그 시간적 변동성이 안정적으로 예측되고 예측결과의 불확실성을 감소시킬 수 있어 그 활용가치가 높은 것으로 나타났다. 이러한 관점에서 본 연구의 ESP 시스템은 중장기적 측면에서 GDAPS 자료의 활용가치를 높일 수 있고, 기존 ESP 결과보다 향상된 정확도로 댐 유입량을 예측할 수 있으므로 실시간 댐 유입량 예측에 적용한다면 수자원 관리 차원에서 유용한 수단이 될 수 있을 것이다.

정량강수모의를 이용한 실시간 유출예측 (Realtime Streamflow Prediction using Quantitative Precipitation Model Output)

  • 강부식;문수진
    • 대한토목학회논문집
    • /
    • 제30권6B호
    • /
    • pp.579-587
    • /
    • 2010
  • 기상청에서 제공하는 강우수치예보정보를 활용하여 10일이내의 중기유량예측을 수행하였다. 기상청의 원시예보자료로는 2일예보를 위한 RDAPS와 10일예측을 위한 GDAPS예측자료를 활용하였다. 수치예보의 정확도를 제고하기 위하여 강우상세 정보를 생산할 수 있는 강수진단모형(QPM)과 QPM모의결과에 내재된 계통적 편이를 제거하기 위하여 분위사상과정 (Quantile Mapping)을 적용하였다. QPM모의결과를 유출모형의 입력정보로 활용하기 위하여 일관적인 체계를 갖춘 유역강수 정보로 변환하여, 장기연속유출모형인 SSARR모형을 이용하여 금강유역내 주요지점에서의 유량예측을 수행하여 유량예측에 대한 검증을 수행하였다. 2006년 1월 1일부터 6월 20일까지 강수예측을 수행한 결과 2일예측인 RQPM의 경우 기간 총강수량을 기준으로 실적강우대비 89.7%의 강수모의값을 보임으로서 양호한 예측성능을 확인할 수 있었다. 유량예측모의에 있어서는 2일예측의 경우 일부 강우사상에서 예측누락과 예측오류가 발생하였지만 전반적으로 유량예측이 양호한 수준이었다. 다만, 하류지점의 경우 조절유량에 의한 유출모형보정의 어려움과 수위-유량관계곡선의 신뢰도저하등의 이유로 예측성능이 떨어지는 경우도 있었다. GQPM에 대한 10일강우예측은 첨두강수와 강수총량에 있어서 다소 과소한 모의값을 보이고 있으며, 강수보정효과도 RDAPS에 비하여 저조한 수준이었다. 이 부분은 강수예측의 사후보정으로는 한계가 있는 것으로 보여지며 원시예측모형의 안정화를 통하여 개선할 수 있는 부분으로 판단된다.