• Title/Summary/Keyword: 중금속 제거

Search Result 626, Processing Time 0.024 seconds

Applicability of electrochemical treatment using BDD electrode (BDD 전극을 이용한 전기 화학적 처리의 적용 가능성)

  • Yu, Mi-Yeong;Kim, Seo-Han;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.51-51
    • /
    • 2018
  • 산업의 발달 및 인구 증가에 따라 발생되는 폐수의 종류는 다양해지고 있으며, 폐수의 처리를 위해서는 주로 생물학적 처리를 먼저 검토하게 된다. 하지만 최근 폐수의 성분은 생물학적으로 처리하기 어려운 난분해성 요인(고농도의 염분, 독성 유기용매, 중금속 등)이 존재 할 뿐 아니라, 생물학적 처리 후 존재하는 잔류 유기물은 환경부에서 제시하는 방류수 기준을 만족시키기에 어려움이 있다. 이러한 난분해성 요인을 제거하기 위해서 전기 화학적 처리의 필요성이 대두되고 있으며, 다양한 고도산화기술들이 제시되고 있다. 그 중 처리시간의 단축으로 인한 처리비용 절감과 산화제 발생에 따른 높은 처리 효율로 인해 전기화학적 폐수산화처리에 대한 연구가 활발히 진행되고 있는 실정이다. 본 연구에서는 기존에 사용되어 지고 있는 전기화학적 폐수산화처리를 위한 불용성 전극을 BDD 전극으로 대체하여 다양한 폐수에 전기분해 처리 적용 가능성을 검토하고자 기존 BDD 전극의 기판 모재로 이용되던 Si, Nb 대신에 Ti 기판 위에 BDD 형성시켜 전극을 제작하였고, 폐수의 전기분해 적용 가능성을 확인하기 위하여 축산폐수, 해양폐수, 질산염폐수 등 실제 폐수를 채수하여 폐수 내 유기물의 전기분해 처리 효율을 분석하였다. 이에 Ti 모재 기판에 증착된 BDD 전극을 이용하여 폐수 내 유기물의 전기분해 처리효율을 분석 한 결과, 축산폐수의 경우 처리시간 150분에 95% 이상 처리효율을 나타냈으며, 해양폐수의 경우 처리시간 60분에 98% 이상의 유기물 제거 효결과가 나타남에 따라 축산폐수와 선박 평형수, 양식장폐수 등 다양한 폐수에 적용이 가능할 것으로 판단되며, 기존에 적용되어 지고 있는 고도산화처리 기술을 BDD 전극을 이용한 전기화학적 처리로 대체 할 수 있을 것으로 기대할 수 있다.

  • PDF

An Experimental Study on the Fundamental Properties of Zeolite Concrete (제올라이트 콘크리트의 기초 물성에 관한 실험적 연구)

  • Jo, Byung Wan;Choi, Ji Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Since the cement industry is expected to face serious setbacks in the near future associated with environmental concerns. With the advent of new technologies and increased public awareness about global environmental issues, the cement industry is actively seeking to adopt new technologies as part of an effort to diversity its resources. This study is designed to assess the fundamental properties of zeolite cement concrete which consists mainly of natural zeolite, which is known for removal of and harmful gas, ion exchange capacity removing cation contaminant including heavy metals and ammonia, absorptive capacity and molecular sieving effect together with excellent insulation capacity as a porous material, and recently draws much attention for its possibility as an alternative material to cement. The study was conducted to show the compressive strength of concrete, slump, bleeding and air volume according to the changes of natural zeolite and alkali activator(NaOH). As a result of measuring the compressive strength of natural zeolite concrete, it was almost 40MPa and displayed similar to general concrete in the tests of slump, bleeding and air volume, with which it was considered that it may be used as a future high performance, high performance construction material.

A Study on the Separation of Mercury from Spent Mercury Batteries (단추형 폐수은 전지로부터 수은 분리에 관한 연구)

  • 손정수;박경호
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.32-37
    • /
    • 1994
  • Mercury in spent button type batteries can be separated and recovered with vacuum distillation method. It was found that mercury in the battery began to distill at $150^{\circ}C$ and organic substanced like a packing material was decomposed at$ 300^{\circ}C$. More than 99.9% of mercury contained in the battery was distiled and separated at about $250^{\circ}C$ and 20 torr with 8 hours' reaction time. The dissolution tests of the residue after distillation showed that mercury concentration in the solution were lower than 5 ppb and this values satisfied the environ-mental condition. Also as the furnace heating rate was above $15^{\circ}C$/min, it was found that the spent battery was destroyed because of increased pressure in the battery inside.

  • PDF

Deactivation and Regeneration of a Used De-NOx SCR Catalyst for Wastes Incinerator (소각로 SCR 폐탈질 촉매의 피독과 효율재생에 관한 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.259-263
    • /
    • 2008
  • The catalytic activity of the used catalyst, $V_2O_5/TiO_2$, for MSW incinerators was investigated focusing on its regeneration. As the result of the experimental analysis, the NOx removal efficiency difference between the fresh catalyst and used catalyst is about 60% at $260^{\circ}C$ and 1, 2-dichlorobenzen (1, 2-DCB) removal efficiency difference is about 14% at $200^{\circ}C$, in honeycomb test. And the catalysts, both the fresh and used, were characterized by XRD, TGA, and ICP techniques in order to investigate the deactivation. On the basis of the results, it is found that the used catalyst is deactivated by ammonium-sulfates, heavy metals (Pb, As etc.), alkali metals (Ca), and phase transfer of $TiO_2$. Also calcination treatment under nitrogen and air condition was excellent than washing and calcination treatment.

Biosorption and Development of Biosorbent by using Seaweed, Sugassum thunbergii (해조류, Sargassum thunbergii를 이용한 중금속의 바이오 흡착제의 개발)

  • SUH Kuen-Hack;LEE Hak-Sung;SUH Jung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • Biosorptions of Cr and Pb were evaluated for 23 species of marine algae collected from a Korean coast. Among a variety of species for biosorbent potential, Sargassum species showed higher uptake capacity for Cr and Pb. An adsorption equilibrium was reached in about 1 hr for Cr and 30 min for Pb. The maximum uptake capacity was136.0 mg Cr/g biomass and 232.5 mg Pb/g biomass, respectively. In Pb biosorption in the column packed with Sargassum tbunbertii, 300 and 200 bed Tolumes at the concentration of 50 mg/L in feed solution were processed at the column residence time of 5 and 10 min before the column breakthrough point occurred. The elutions with 0.1 M HCl solution were more than $95{\%}$. The high efficiency of continous biesorntion and elution (3 cycles) indicated that Sargassum thunbergii was an effective biosorbent for Pb recovery.

  • PDF

Biosorption of Lead and Cobalt by Absidia coerulea and Thraustochitrium sp. (Absidia coerulea와 Thraustochitrium Sp. 에 의한 납과 코발트의 생물흡착)

  • Lee, Moo-Yeal;Yang, Ji-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2149-2161
    • /
    • 2000
  • Nonliving Absidia coerulea and Thraustochitrium sp. were used as biosorbents to remove lead and cobalt that are one of representative pollutant in wastewater and radioactive liquid waste. The optimum pH range for maximum lead and cobalt removal was increased 6.5~11.4 and 8.6~12.0 for Absidia coerulea and 4.2~10.5 and 8.9~11.6 for Thraustochitrium sp. to compared to biosorbent-free control, pH of 8.4~11.2 and 10.5~11.5, respectively. With 1 g biosorbent/L at initial solution pH 5.0. Absidia coerulea and Thraustochitrium sp. took up lead from aqueous solutions to the extent of 104 and 125 mg/g biomass, respectively, whereas Absidia coerulea and Thraustochitrium sp. at initial pH 6.0 took up only 2 and 20 mg/g biomass of cobalt, respectively. For initial 500 mg Pb/L at initial pH 5.0. optimum amount of biosorbent for maximum lead uptake was 0.2 g/L for Absidia coerulea and Thraustochitrium sp., whereas optimum 3.0 g biosorbent/L was needed for initial 200 mg Co/L at initial pH 6.0. Absidia coerulea and Thraustochitrium sp. had higher adsorption capacity for lead than that of cobalt.

  • PDF

A Study on the Regeneration Effects of Commercial $V_2O_5-WO_3/TiO_2$ SCR Catalyst for the Reduction of NOx (질소산화물 제거용 상용 $V_2O_5-WO_3/TiO_2$ SCR 폐 촉매의 재생 효과 고찰)

  • Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.859-869
    • /
    • 2005
  • The commercial $V_2O_5-WO_3/TiO_2$ catalysts which had been exposed to the off gas from incinerator for a long time were regenerated by physical and chemical treatment. The catalytic properties and NOx conversion reactivity of those catalysts were examined by analysis equipment and NOx conversion experiment. The characterization of the catalysts were performed by XRD(x-ray diffractometer), BET, POROSIMETER, EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma), TGA(thermogravimetric analyzer) and SEM (scanning electron microscopy). NOx conversion experiment were performed with simulated off gas of the incinerator and $NH_3$ was used as a reductant of SCR reaction. Among the regeneration treatment methods which were applied to regenerate the aged catalysts in this study, it showed that the heat treatment method had excellent regeneration effect on the catalytic performance for NOx conversion. The catalytic performance of the regenerated catalysts with heat treatment method were recovered over than 95% of that of fresh catalyst. For the regenerated catalysts with the acid solution(pH 5) and the alkali solution(pH 12), the catalytic performance were recovered over than 90% of that of fresh catalyst. From the characterization results of the regenerated catalysts, the specific surface area was recovered in the range of $85{\sim}95%$ of that of fresh catalyst. S and Ca element, which are well known as the deactivation materials for the SCR catalysts, accumulated on the aged catalyst surface were removed up to maximum 99%. Among the P, Cr, Zn and Pb elements accumulated on the aged catalyst surface, P, Cr and Zn element were removed up to 95%. But the Pb element were removed in the range of $10{\sim}30%$ of that of fresh catalyst.

Evaluation of the Removal Properties of Cu(II) by Fe-Impregnated Activated Carbon Prepared at Different pH (pH를 달리하여 제조한 3가철 첨착 활성탄에 의한 구리 제거특성 평가)

  • Yang, Jae-Kyu;Lee, Nam-Hee;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.345-351
    • /
    • 2008
  • Fe-impregnated activated carbon(Fe-AC) was prepared by Fe(III) loading on activated carbon(AC) in various preparation pH. In order to evaluate the stability of Fe-AC, dissolution of iron from Fe-AC in acidic conditions was measured. In addition, batch experiments were conducted to monitor the removal efficiency of copper by Fe-AC. Results of stability test for Fe-AC showed that the amount of extracted iron increased with contact time but decreased with increasing solution pH. The dissolved amount of iron gradually increased at solution pH 2 and finally 13% of the total iron loaded on activated carbon was extracted after 12 hr. However dissolution of iron was negligible over solution pH 3. Removal of Cu(II) by Fe-AC was greatly affected by solution pH and was decreased as solution pH increased as well as initial Cu(II) concentration decreased. Surface complexation modeling was performed by considering inner-sphere complexation reaction and using the diffuse layer model with MINTEQA2 program.

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

Distribution of Pollutant Content within Surface Sediment and Evaluation of Its Removal Efficiency in the Sihwa Constructed Wetland (시화호 인공습지에서 표층퇴적토의 오염물질 함량 분포와 제거효율 평가)

  • Choi, Don-Hyeok;Choi, Kwang-Soon;Kim, Dong-Sup;Kim, Sea-Won;Hwang, In-Seo;Lee, Mi-Kyung;Kang, Ho;Kim, Eun-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.755-764
    • /
    • 2009
  • To estimate the pollutant removal efficiency by surface sediment, matter content within surface sediment and its release from the sediment were investigated at 12 sites in the Sihwa constructed wetland. The content of COD, TOC, IL, TN, and TP within sediment varied temporally and spacially, showing ranges of 4.1~7.7 mg/g, 0.29~2.81%, 1.88~8.15%, 0.03~0.35%, 362~1,150 ${\mu}g$/g, respectively. The contents of organic matter and TN were significantly highest in March and decreased towards fall (March${\geq}$May${\geq}$July${\geq}$September, p=0.003 for COD, p=0.001 for TOC, p=0.017 for IL, p=0.015 for TN), whereas TP content was not significant statistically in difference between sampling times. The contents of heavy metals also varied largely with sampling sites and times (As:3.5~3.9 ${\mu}g$/g, Cd:0.08~0.38 ${\mu}g$/g, Cr:51.8~107.0 ${\mu}g$/g, Cu:16.4~81.8 ${\mu}g$/g, Pb:26.~81.8 ${\mu}g$/g, Zn:85~559 ${\mu}g$/g). As compared with sediment quality guideline, the content of organic matter within surface sediment of the Sihwa constructed wetland was classified as unpolluted level. In contrast, the contents of TN, TP and heavy metals were classified as medium or severe pollution state, except some heavy metals (Cu and Pb). From the results of release experiment, TN, Pb, and Zn tend to be removed by surface sediment, but TP, Cd, and Cu have a tendency to released from sediment. Therefore, a relevant plan to improve the removal efficiency of pollutant (especially phosphorus) by surface sediment in the Sihwa constructed wetland is needed.