• 제목/요약/키워드: 중규모 기상모형

검색결과 102건 처리시간 0.05초

앙상블 하천유량 예측을 위한 동적수자원평가시스템의 적용 및 평가 (Application and assessment of Dynamic Water resources Assessment Tool (DWAT) to predict ensemble streamflow)

  • 최정현;김덕환;장철희;김현준;신형섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.346-346
    • /
    • 2023
  • 한국은 기상·수문정보의 예측이 기상 및 기후 측면에서 주도적으로 이루어지고 있다. 그러나 단기 및 중기 수자원 평가 및 분석을 위해 필요한 시공간적 규모, 정확도, 평가체계를 고려한 기상 기후 예측정보의 활용 방안이 마련될 필요가 있다. 이에 본 연구에서는 미래 수자원 평가 및 분석을 위한 방안을 마련하고자 국내 경안천 유역을 대상으로 하천유량을 예측하고 평가하였다. 이를 위해, 우리는 세계기상기구(World Meteorological Organization, WMO)에서 회원국을 대상으로 배포 중인 수자원 평가 도구인 동적수자원평가시스템(Dynamic Water resources Assessment Tool, DWAT)을 경안천 유역에 대하여 구축하고, 과거 관측 기상 및 유량 자료를 이용하여 매개변수를 보정하였다. 앙상블 하천유량 예측을 위해서 전지구적인 기후 패턴과 국내 기상 특성 간의 상관성 분석 후 이를 예측인자로 활용하여 다중회귀모형과 인공신경망 모형으로부터 생성된 1,000개의 앙상블 강우 및 기온 예측정보를 DWAT의 입력자료로 이용하였다. 2022년에 대한 앙상블예측정보를 DWAT의 입력자료로 사용하여 앙상블 하천유량이 예측되었다. 예측된 일-단위 하천유량은 실제 관측유량과 차이를 보이나 이는 예측된 앙상블 강우 및 기온정보의 오차에 기인하는 것으로 보인다. 이러한 결과는 수문 모형 결과의 오차는 강제 자료의 오차에 큰 영향을 받는 한계를 다시 한번 확인시켜준다. 따라서 단기·중기 수자원 평가 및 분석을 월-단위 하천유량으로 변환하여 월별 통계치를 분석하는 방향을 고려할 필요가 있다.

  • PDF

기상인자를 활용한 시단위 극치강우량 전망 (An Hourly Extreme Rainfall Outlook Using Climate Information)

  • 김용탁;홍민;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.14-14
    • /
    • 2018
  • 세계의 여러 국가에서 과거 발생했던 강수의 통계적 특성에서 벗어나는 극치사상이 빈번하게 관측되고 있다. 이와 같은 현상에 가장 큰 영향을 미치고 있는 요인중 하나는 지구온난화이며 실제 산업화 이후 온실가스의 증가와 더불어 극한 기상현상의 발생 빈도가 증가하였다. 현재 예상치 못한 수문사상의 발생으로 인해 수자원관리에 있어서 많은 어려움을 겪고 있으며, 특히 호우사상은 막대한 인명 및 사회적 피해를 야기하고 있다. 우리나라의 경우 계절적 특징으로 여름철에 강수가 집중되는 양상을 보이고 있으며 따라서 여름철 강수량을 예측하여 호우에 대한 대비책을 마련해야한다. 계절강수 예측은 수문, 산림, 식품, 등을 포함한 사회 경제적 파급 효과가 매우 크지만 아직 신뢰성 있는 예측은 어려운 상태이다. 또한, 발생 강도와 빈도가 큰 극한 강우는 주로 짧은 시간에 걸쳐 발생하기 때문에 예측하기가 어렵다. 최근 다양한 분야의 연구에서 AO, NAO, ENSO, PDO등과 같은 외부적 요인이 수문학적 빈도를 변화시킨다고 알려지고 있어 본 연구에서는 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 토대로 외부 기상인자에 의한 변동성을 고려할 수 있는 계절강수량 예측모형을 구축한 후 산정된 결과를 입력 자료로 하여 극치강수량을 추정할 수 있는 비정상성 Four - Parameter (4P)-Beta분포를 이용한 알고리즘을 개발하여 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 모형으로 확장하여 이를 통해 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용하고자 하였다.

  • PDF

ADOM을 이용한 습성침적 플럭스의 산정

  • 임주연;이황운;문난경
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2001년도 가을 학술발표회 발표논문집
    • /
    • pp.60-62
    • /
    • 2001
  • 습성침적은 여러 가지 기상 요소 중 대규모 강수량과 구름의 두께에 의해 큰 영향을 받는다. 실측치를 ADOM에 적용하여 습성침적 플럭스를 산정한 결과, $SO_2$의 침적 플럭스는 대규모 강수량과 구름 두께에 의해 좌우되고, sulfate의 침적 플럭스는 여름에 많고 겨울에 적은 전형적인 sulfate의 습성침적 패턴을 잘 따르며, 구름 내 $SO_2$의 산화정도에 따라 다르게 나타난다. 이상의 연구 결과들은 향후 산성 침적 모형을 사용한 다양한 조건에서의 습성침적 연구 및 나아가 습성침적 플럭스의 예측에 관한 선행 연구로서 도움을 줄 것으로 사료된다.

  • PDF

다중선형회귀 및 인공신경망 모형을 이용한 대설피해에 따른 피해액 예측에 관한 연구 (Prediction of damages induced by Snow using Multiple-linear regression and Artificial Neural Network model)

  • 권순호;이의훈;정건희;김중훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.20-20
    • /
    • 2017
  • 최근 기후변화 영향에 따라 전 세계적으로 인명피해 및 재산피해를 유발하는 자연재난이 지속적으로 증가하고 있으며, 그로 인한 자연재해의 규모가 점점 더 커지고 있다. 실제로 우리나라에서도 지난 1994 년에서 2013 년까지 지난 20 년간 자연재해에 의한 피해액은 12조 3천억 원으로 집계되었으며, 이 중 강우와 태풍에 의한 피해가 85 % 이고, 대설에 의한 피해는 약 13 % 로 자연재해 중 대부분의 피해는 강우 및 태풍에서 발생하지만, 폭설에 의한 피해도 적지 않은 것으로 나타났다. 이에 따라, 정확한 예측을 위해 신뢰도 높은 자료 구축을 통한 대설피해 예측에 관한 연구가 필요한 시점이다. 본 연구에서는 대설피해액 예측을 위해 우리나라의 63개 기상 관측소에서 관측한 적설심 자료 및 기상관측 자료와 사회 경제 자료 총 11개를 대설피해 예측을 위한 입력변수로 선정하고, 이를 기상관측소가 속한 도시의 면적에 따라 3개의 지역으로 구분하였다. 주성분분석을 활용하여 선정된 입력변수들을 4개의 주성분으로 구분하고, 인공신경망 및 다중선형 회귀 모형을 구성하여 각 지역별 대설피해 예측의 오차를 분석하였다. 적용결과, 인공신경망 모형을 이용한 대설피해 예측의 수정결정계수는 22.8 %~48.2 %를 나타냈고, 다중선형회귀 모형의 수정결정 계수는 9.2 %~39.7% 로 나타났다. 그러므로 인공신경망 모형이 다중회귀 모형보다 선택된 입력자료를 활용하여 대설피해를 예측하는 목적으로 조금 더 우수한 결과를 나타내었다. 향후 자료를 보완 및 모형의 고도화를 통해 보다 정확한 대설피해 예측 함수 개발이 가능할 것으로 기대된다.

  • PDF

WRF을 이용한 북한 지역의 풍력-기상자원 분석 (Analysis of Wind resource over the North Korea using a WRF model)

  • 서범근;변재영;최영진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.188.2-188.2
    • /
    • 2010
  • 북한은 자급자족의 형태로 지하자원과 수력을 이용하여 에너지원으로 사용하고 수입연료를 자제하는 실정이다. 하지만 기존의 발전 설비들의 노후화와 지하자원의 확보의 어려움이 증가 되어 신재생에너지의 개발을 확대하고 있다. 이에 우리나라에서는 남북의 기술교류 확대 및 미래 에너지 자원의 확보를 위하여 북한 자원자원에 대한 연구가 이뤄지고 있다. 기존의 연구에서는 북한지역의 관측값을 활용하거나 저해상도의 바람지도들이 작성되었다. 북한 지역의 바람의 분포를 세밀히 파악하기 위하여 기존의 바람지도 보다 상세한 풍력-기상자원지도가 필요하기 때문에 연구를 진행하였다. 북한의 풍력-기상자원지도를 개발하기 위해 미국 NCAR에서 개발한 중규모 모형인 WRF(Weather Research & Forcasting)을 활용하였다. 좋은 풍력자원을 갖춘 장소에 풍력 단지를 조성하기 위해서는 고해상도의 기상자원지도를 이용해서 파악하는 것이 필요하므로 해상도를 1km으로 설정하여 수행되었다. 본 연구의 결과로 지상 80 m에서의 1km 해상도를 갖는 풍력-기상자원지도를 작성하였다. 개발된 풍력-기상자원지도의 검증을 위해서 우리나라에서 확보가 가능한 북한 27개 지점의 지상 10 m 바람자료들을 활용하였다. 풍속에 대한 검증은 Bias와 RMSE을 이용하였으며, 풍향의 검증은 MAE을 활용하였다. 연 평균의 북한의 풍력-기상자원지도를 보면, 북한의 산맥을 중심으로 다른 지역보다 높은 풍속 분포를 보이고 있으며, 황해도를 포함한 북한의 서해안지역에서 비교적 높은 풍속의 분포를 나타내고 있다. 계절별로 살펴보면 봄철과 겨울철에 여름과 가을철보다 높은 풍력자원이 나타나며, 여름철이 가장 낮은 풍력자원을 갖는 것으로 분석되었다.

  • PDF

강수진단모형을 이용한 실시간 저수지 일유입량 예측 (Daily Reservoir Inflow Prediction using Quantitative Precipitation Model)

  • 강부식;강태호;오재호;김진영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.291-295
    • /
    • 2007
  • 강수진단모형을 이용하여 저수지 이수운영을 위한 실시간 유량예측기법을 개발하였다. 강수진단모형은 현재 기상청 현업에서 수행중인 강우수치예보를 기반으로 상세 지역의 지형 효과에 의한 강수를 예측하는 정량강수예측모형(QPM; Quantitative Precipitation Model)으로서 부경대학교 환경대기과학과에서 개발된 모형이다. QPM은 중규모 예측 모형으로부터 계산된 수평 바람, 고도, 기온, 강우 강도, 그리고 상대습도 등의 예측 자료를 이용하고, 소규모 상세지형 효과를 고려함으로써 중규모 예측 모형에서 생산된 강수량 예측 값을 상세 지역의 지형을 고려한 강수량 예측 값으로 재구성하여 결과적으로 3km 간격의 상세지역 강우산출과 지형에 따른 강수량의 분포 파악이 용이할 뿐만 아니라 계산 효율성을 개선된 모형이다. QPM 검증을 위하여 기상학적 평가와 수문학적 평가를 수행하였다. 호우 사례별 일강수량의 시공간 분포로 부터, QPM을 활용한 시스템에 의한 예측결과가 원시자료 RDAPS 보다 고해상도의 예측 및 지형효과의 반영도가 높았으며, AWS의 관측자료와 비교하여 보다 높은 예측성을 보여 주었다. 대상기간인 2006년 1월 1일부터 6월 20일까지 관측강우는 총 391.5mm 였으며 RQPM은 실적강우에 비하여 119.5mm 정도 과소산정하고 있으나 분위사상과정을 거치게 되면 351.7mm로서 실적강우에 불과 10.2% 못미치고 있다. 이는 고무적인 결과로 볼 수 있으며 현업에서의 활용성이 기대되는 수준이라 볼 수 있다. 강우-유출모의를 위한 QPM신뢰도를 높이기 위하여 분위사상법(Quantile Mapping)을 이용하여 QPM모의에 존재할 수 있는 계통오차에 대한 추가적인 보정을 수행하였다. 수문학적 평가를 위하여는 장기연속유출모형인 SSARR모형을 기반으로 개발된 RRFS(Rainfall-Runoff Forecast System)을 이용하여 2006년 1월${\sim}$9월까지의 용담댐 유입량에 대하여 모의예측결과와 관측유입량 비교를 통한 검증을 수행하였다. 위 기간중 예측유입량의 RMSE(Root Mean Squared Error), COE(Sutcliffe Coefficient of Efficiency), MAE(Mean Absolute Error), $R^2$값은 각각 7.50, 0.68, 2.59, 0.69 값을 보이고 있다. 본 연구에서는 QPM에 의한 예측성의 향상 및 구축된 시스템에 의한 일강수량의 장기예측 가능성을 확인하였고, 향후 시스템을 현업에 활용하기 위해서 생산된 예측자료의 보다 장기적인 검증을 통한 시스템의 안정화가 필요할 것으로 사료된다.

  • PDF

수치 기상 모형을 이용한 최대 강수량 산정에 대한 연구 (Study for Estimation of Maximum Precipitation using Numerical Weather Model)

  • 이정훈;김상단
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.235-235
    • /
    • 2016
  • 댐이나 홍수방지시설과 같은 대규모 수공구조물의 설계 및 평가에는 주로 가능최대강수량(Probable Maximum Precipitation, PMP)가 적용되고 있다. 이러한 PMP의 산정은 관측자료의 정상성 가정을 기반으로 하기 때문에 기후변화와 같은 비정상성을 고려할 수 없다. 본 논문에서는 이러한 문제를 극복하기 위해 대기 프로세스의 비정상성 효과를 반영할 수 있는 물리적 기반의 수치 기상 모형(Numerical Weather Model)을 이용하여 최대강수량(Maximum Precipitation, MP)을 산정하는 접근법을 제시하고자 한다. 사례 연구로 대상 극한 강우사상을 식별하고, 식별된 사상들은 지역 대기 모형 중 하나인 WRF를 이용하여 재현된다. 이때, 한국 내의 약 650개의 AWS 자료와 NCEP에서 제공하는 전세계 기상관측자료 및 해수면 온도 자료를 사용하여 초기조건과 경계조건을 개선하고, 총 강수량과 강우의 공간적인 분포를 재현하기 위한 최적 물리옵션을 찾기 위해 다양한 수치실험이 수행된다. 최종적으로 재현된 극한 강우사상은 모형의 경계조건과 수분 최대화의 통해 최대화되어 물리적으로 가능한 최대 강수량을 산정하게 된다. 본 연구는 제한된 강우사상을 대상으로 최대 강수량을 산정하였기 때문에 추후 다양한 강우사상에 대한 연구와 강우의 최대화에 대한 보완이 필요하지만, 정상성 가정에 의존하지 않는 극한 강우사상 산정에 잠재적인 대안이 될 것이라 기대된다.

  • PDF

딥러닝을 이용한 대설피해액 예측 및 개선방안 제안 (Predicting Snow Damage and Suggesting Improvement Plans Using Deep Learning)

  • 이형주;정건희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.485-485
    • /
    • 2021
  • 최근 세계적인 기상이변으로 자연재해의 발생빈도 증가는 물론 이로 인한 피해가 점차 다양화 및 대형화되어 가고 있는 추세이다. 재난으로 인한 피해는 발생지역 피해뿐만 아니라 국가 경제 전반에 큰 영향을 미치는 특징이 있다. 우리나라의 자연재해 중 대설은 다른 자연재해에 비해 발생빈도는 낮지만 광역적인 피해를 유발하며, 피해 면적에 비해 피해액 규모가 크다. 또한 현재에는 강원권이 가장 취약한 것으로 취약성 분석 결과에서 보여주지만, 미래에는 강원권, 충청권, 호남권을 연결하는 축으로 취약지역이 확대될 것으로 전망된다. 본 연구에서는 현재 사회 전반에서 다양하게 활용되고 있는 머신러닝 기법을 이용하여 우리나라 대설피해액을 예측하는 대설피해 예측모형을 개발하고자 하였다. 머신러닝 기법으로는 랜덤포레스트, 서포트 벡터 머신, 인공신경망 기법을 이용하였고, 모형에 사용한 변수는 기상관측자료, 사회·경제적 요소 등을 활용하여 모형을 개발하였다. 결과적으로 기존연구에서 다중회귀모형을 이용하여 개발된 예측모형과 본 연구에서 3개의 머신러닝 기법으로 개발된 예측모형의 예측력을 비교 분석하였고, 예측력이 가장 높은 모형을 제시하였다. 본 연구결과를 활용하여 모형의 개선 및 데이터 품질 개선이 이루어진다면 향후 대설피해에 대한 개략적인 대비가 가능할 것으로 기대된다.

  • PDF

농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축 (Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information)

  • 김대준;김수옥;김진희;윤은정
    • 한국농림기상학회지
    • /
    • 제21권3호
    • /
    • pp.146-157
    • /
    • 2019
  • 우리나라 농산촌 환경의 가장 큰 특징 중 하나는 지형이 복잡하여 좁은 지역 내에서도 기상/기후 분포변이가 크다는 점이다. 이를 효과적으로 모의하기 위하여 '소기후 모형'이 개발되었고 현재까지 지속적으로 개선 연구가 진행되고 있다. 소기후 모형은 우리나라 전역에 대해 농장필지 단위까지 공간적으로 정밀한 농업기상/기후 정보를 표현할 수 있는 모형으로 기후요소별로 독자적으로 개발되었다. 소기후모형을 이용하여 2000년대에는 국지규모의 현재평년 및 미래 시나리오 기반 기후정보를 산출하였다. 평년 전자기후도는 과거 30년 기간의 월별 최저기온, 최고기온, 강수량, 일사량을 30 m 격자해상도로 상세화 한 분포도이며, 이 전자기후도를 기반으로 미래 기후변화 시나리오를 고해상도로 상세화하여 제작하였다. 이 들 전자기후도는 농업분야 기후변화 영향평가에 다양한 형태로 재가공 되어 이용되었다. 2010년대에는 농장맞춤형 기상 실황 및 예보자료를 국지규모로 생성하고 있다. 소기후 모형은 지속적인 개선 과정을 통해 일별 관측기상자료를 기반으로 실황정보를 상세화하는 기술로 발전하고 있으며, 기상청 동네예보 및 중기예보를 30 m 격자해상도로 상세 모의하여 농업분야 종사자에게 예측 정보를 실시간 제공할 수 있는 '농업기상 재해 조기경보 서비스' 기반의 핵심기술로 인정 받고 있다. 현재 상세 기상 실황 및 예보정보로는 일 최저 및 최고기온과 강수량, 일사량, 일조시간 등이 산출되고 있으며, 과거-현재-미래의 농장규모 기상정보를 토대로 각종 농작물의 생육정보와 기상재해 예측정보를 생산하고 있다.

SWAT 모형에 의한 수문 및 환경인자 예측을 위한 유역분할의 영향 (Effect of Watershed Subdivision on Hydrologic and Environmental Factor Predictions in SWAT Model)

  • 장경수;장광진;여운기;고진석;지홍기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1578-1582
    • /
    • 2007
  • SWAT(Soil and Water Assessment Tool) 모형을 이용한 수문 환경인자 예측에 있어서 적절한 소유역의 분할은 그 결과에 매우 중요한 영향을 미친다. 소유역의 크기, 규모 및 분할개수에 따라 유역모델링 과정과 그 결과에 큰 영향을 미치기 때문이다. 따라서 본 연구에서는 SWAT 모형의 거동 특성과 유역수준별 소유역 분할에 대한 기준을 제시할 목적으로 낙동강의 제1지류이자 국제수문개발계획(International Hydrologic Project, IHP)의 국내 대표유역 중 하나인 위천 유역을 대상으로 하여 각 유역별 소유역 분할 수에 따른 연평균 유출, 유사량 및 환경인자의 변화를 검토하였다. 여기서, SWAT 모형의 적용을 위하여 DEM, 토지이용도/토지피복도, 토양도 등의 GIS 자료와 강우량 및 기상자료를 이용하였다. 이로부터 본 논문은 위천 유역에 대한 적정 소유역 분할 기준을 제시하였으며, 이를 바탕으로 모형 구축시간 및 모의시간 단축할 수 있어 모형의 적용 효율을 높일 수 있을 것으로 판단된다.

  • PDF