• Title/Summary/Keyword: 중공형 액추에이터

Search Result 2, Processing Time 0.016 seconds

Study on Basic Characteristics of Hollow Piezoelectric Actuator for Driving Nanoscale Stamp (나노스템프 구동용 중공형 압전액추에이터 기본특성에 관한 연구)

  • Park, Jung-Ho;Lee, Hu-Seung;Lee, Jae-Jong;Yun, So-Nam;Ham, Young-Bog;Jang, Sung-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1015-1020
    • /
    • 2011
  • Nanoimprint lithography has been actively investigated. This method can replicate a nanopatterned master stamp onto a thin polymer film on a silicon substrate and so on. In this study, a square-shaped hollow piezoelectric actuator is presented, which is newly developed. This actuator is used for driving a nanoscale stamp in nanoimprint lithography instead of a conventional electric motor. The fabricated prototype actuator has 95 layers and side lengths of 23 mm and 18 mm for the outer and inner squares, respectively. By adopting a novel process instead of the conventional forming process for fabricating a one-layer actuator, the one-layer is composed of four rectangular segments produced by sawing a ceramic film with a thickness of 0.3 mm. The basic characteristics on displacement and generation force of the fabricated prototype actuator are experimentally investigated. Furthermore, the displacement characteristics obtained by using a PI controller are tested and discussed.

Enhancement of Oxygen Transfer Efficiency Using Vibrating lung Assist Device in In-Vitro Fluid Flow (In-vitro 유동장에서 진동형 폐 보조장치를 이용한 산소전달 효율의 향상)

  • 권대규;김기범;이삼철;정경락;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1332-1335
    • /
    • 2003
  • This paper presents the enhancement of oxygen transfer efficiency using the vibrating intravascular lung assist device (VIVLAD) in in-vitro experiments for patients having chronic respiratory problems. The test section was a cylinder duct with the inner diameter of 30 mm. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-vibrator, a function generator. and a power amplifier. The direction of vibration was radial to the fluid flow. Gas flow rates of up to 6 l/min through the 120-cm-Jong hollow fibers have been achieved by exciting a piezo-vibrator. The output of PVDF sensor were investigated by various frequencies in VIVLAD. The experimental results showed that VIVLAD would be enhance oxygen transfer efficiency.

  • PDF