• Title/Summary/Keyword: 중공단면교각

Search Result 29, Processing Time 0.021 seconds

Characteristics of the Stress-strain Relationship of Square Sectional Concrete Confined by Hoop Reinforcement with Cross-ties (후프띠철근과 보강띠철근으로 횡구속된 정사각단면 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Cha, Soo-Won;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.39-48
    • /
    • 2010
  • Improved seismic performances of RC bridges can be attained by sufficient ductilities of piers, which can be obtained by providing sufficient lateral confinements to the plastic hinge regions of piers. The cross sectional shape and the amount of lateral reinforcements are key parameters in the determination of effective confinements. Even though identical amounts of lateral reinforcement are provided, the effective confinement differs due to different spacing, arrangements, hook details and so on. Unlike circular sections in which confinement is exerted by mere hoop reinforcements, cross-ties are arranged in square or rectangular sections to enhance the effective confinements. The stress-strain relationship of confined concrete is varied by how to consider these cross-ties. In this study, the stress-strain relationships of confined concrete with cross-ties are investigated experimentally and their mechanical characteristics are estimated by comparison with other empirical equations.

Ductility performance of hollow-section reinforced concrete piers using high-strength reinforcing bars (중공단면 고강도 철근 콘크리트 교각의 연성거동에 관한 실험적 연구)

  • Oh Byung Hwan;Park Dae Gyun;Cho Keun Ho;Shin Yong Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.730-733
    • /
    • 2004
  • Three Hollow RC piers were tested under a constant axial load and a cyclically reversed horizontal loadto investigate the structural behavior of hollow RC piers using the high strength concrete and the high strength rebars. The test variables include concrete compressive strength, steel strength, and steel ratio. The test results indicate that RC piers using the high strength concrete and high strength rebars exhibit ductile behavior and appropriate seismic performance, in compliance with the design code. The present study allows more realistic application of high strength rebars and concrete to RC piers, which will provide enhanced durability as well as more economy.

  • PDF

New Hollow RC Bridge Pier Sections with Triangular Reinforcement Details: I. Development and Verification (삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각단면: I. 개발 및 검증)

  • Kim, Tae-Hoon;Lee, Seung-Hoon;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.109-120
    • /
    • 2015
  • The purpose of this study was to investigate the performance of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details. The proposed triangular reinforcement details are economically feasible and rational and facilitate shorter construction periods. A model of pier sections with triangular reinforcement details was tested under quasi-static monotonic loading. As a result, proposed triangular reinforcement details was equal to existing reinforcement details in terms of required performance. In the companion paper, the parametric study for the performance assessment of new hollow RC bridge pier sections with triangular reinforcement details is performed.

New Hollow RC Bridge Pier Sections with Triangular Reinforcement Details: II. Parametric Study (삼각망 철근상세를 갖는 새로운 중공 철근콘크리트 교각단면: II. 매개변수 연구)

  • Kim, Tae-Hoon;Kim, Ho-Young;Son, Je-Kuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.121-132
    • /
    • 2015
  • The purpose of this study is to investigate the behavior characteristics of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details and the spacing of the transverse reinforcement. Additional eight column section specimens were tested under quasi-static monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A innovative confining effect model was adopted for new hollow bridge pier sections. This study documents the testing of new hollow RC bridge pier sections with triangular reinforcement details and presents conclusions based on the experimental and analytical findings.

Development of Hollow Reinforced Concrete Bridge Column Sections with Reinforcement Details for Material Quantity Reduction (물량저감 철근상세를 갖는 중공 철근콘크리트 교각단면의 개발)

  • Kim, Tae-Hoon;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.107-115
    • /
    • 2013
  • The purpose of this study was to investigate the performance of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction. The proposed reinforcement details has have economic feasibility and rationality and makes construction periods shorter. A model of column sections with reinforcement details for material quantity reduction was tested under quasistatic monotonic loading. As a result, the proposed reinforcement details for material quantity reduction was were equal to existing reinforcement details in terms of the required performance. In the a subsequent paper, the an experimental and analytical study will be performed for the performance assessment of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction will be performed.

An Experimental Study for the Failure Mode and the Ductility of a High Pier with a Hollow Section using a High Strength Cocnrete and Steel (고성능 중공단면 교각의 파괴모드 및 연성에 관한 실험적 연구)

  • Oh Byung Hwan;Choi Seung Won;Park Young Ho;Pang Gi Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.63-66
    • /
    • 2005
  • Six RC pier were tested under a constant axial load and a cyclically reversed horizontal load to investigate the performance of RC piers used in the high strength concrete and the high strength rebar. It is designed with a hollow section according to the Korean Bridge Design Standard. The variables of the test were concrete strength, rebar strength, a ratio of lap splice and a ratio of transvere rebar. The test results show that the performance of a RC Pier; failure mode, crack pattern, maximum load and ductility.

  • PDF

A Study on the Moment-Curvature Relation of Hollow RC piers considering Tension Stiffening Effect (인장강성효과를 고려한 중공단면 교각의 모멘트-곡률 관계에 대한 연구)

  • Park Young Ho;Kim Se Hun;Choi Seung Won;Oh Byung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.17-20
    • /
    • 2005
  • Moment-curvature relation of RC pier is influenced greatly in occurrence form of crack and difference is happened according to consideration existence and nonexistence of tension stiffening effect. However, studies considering these is very insufficient misgovernment. Also, it is sometimes unavoidable lap splice of axial reinforcement in plastic hinge region of RC piers. However, specific design standard about lap splice of axial reinforcement is unprepared real condition and study about effect that lap splice of axial reinforcement get in occurrence form of crack is insufficient misgovernment. Therefore, in this paper, experiments are performed with hollow RC piers that do lap splice of axial reinforcement by main variable. And this study present analytical method about moment-curvature relation of hollow RC pier that consider tension stiffening effect and analyze effect that lap splice of axial reinforcement gets in occurrence form of crack. Analytic method of moment-curvature relation of RC pier that present in this study shows very similar motion with experiment result and crack interval of RC pier is suffering dominate impact in the augmented reinforcement amount by lap splice and average crack interval decreases as lap splice ratio increases.

  • PDF

Parametric Study on Hollow Reinforced Concrete Bridge Column Sections with Reinforcement Details for Material Quantity Reduction (물량저감 철근상세를 갖는 중공 철근콘크리트 교각단면에 관한 매개변수 연구)

  • Kim, Tae-Hoon;Kim, Ho-Young;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.159-169
    • /
    • 2013
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details, the diameter of the transverse reinforcement and loading types. Eighteen column section specimens were tested under quasi-static monotonic loading. In this study, the computer program RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used. A modified lateral confining effect model was adopted for the hollow bridge column sections. This study documents the testing of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction and presents conclusions based on the experimental and analytical findings.

The shear strength of RC rectangular sectional columns considering displacement ductility (변위연성도를 고려한 RC 사각단면 기둥의 전단강도)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.37-47
    • /
    • 2010
  • In order to attain enhanced seismic performance of RC bridges, premature shear failure prior to the achievement of target ductilities of the piers should be prevented. For this purpose, a reliable shear strength evaluation is required. The shear strength of an RC column subjected to a lateral force decreases with an increase in ductility. Many empirical equations for the shear strength have been proposed by many researchers. However, there are many discrepancies in the initial shear strength in the low ductility range, and in the decrease rate according to the ductility. In this study, a new empirical equation of shear strength considering the displacement ductility effect has been proposed, in which the initial shear strength equation proposed by the authors was revised on the basis of the investigation of many other researchers' test results. The resulting improvement in accuracy is confirmed by comparison with other empirical equations.