• Title/Summary/Keyword: 준정적 시험

Search Result 60, Processing Time 0.021 seconds

Experimental Study for the Impact Characteristics of Expanded EPP/EPS Foams (발포 EPP/EPS의 충격특성에 관한 실험적 연구)

  • Kim, Han-Kook;Kim, Byeoung-Jun;Jeong, Kwang-Young;Cheon, Seong S.
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.343-348
    • /
    • 2013
  • In the present study, quasi-static tests and impact tests were performed for investigating the mechanical behaviour of EPP (Expanded polypropylene) and EPS (Expanded polystyrene). Four different density cylindrical type specimens were prepared for EPP and EPS and 0.001 $s^{-1}$ and 0.1 $s^{-1}$ of strain rate conditions for quasi-static tests and 100 J, 200 J and 300 J of incident energy conditions for the instrumented impact tests were considered.

A Constitutive Equation Including Strain Rate Effect for the Expanded Polypropylene (변형률 속도가 고려된 발포 폴리프로필렌의 구성방정식)

  • Kim, Han-Kook;Cheon, Seong S.
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.130-134
    • /
    • 2014
  • The purpose of this paper is to build DB in order to Propose new constitutive equations by redefining constitutive equations for Polyurethane presented by Jeong et al. [12] based on Quasi-static test and Impact test DB of Expanded polypropylene using cylindrical specimens with 4 different densities presentsd by Kim et al. [7] for EPP foam and combining the impulse-momentum theory.

A Study on Residual Strength of Carbon/Epoxy Face Sheet and Honeycomb Core Sandwich Composite Structure after Quasi Static Indentation Damage (탄소섬유/에폭시 면재, 알루미늄 허니컴 코어 샌드위치 복합재 구조의 압입 손상에 의한 잔류강도 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Seoung-Hyun
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.24-29
    • /
    • 2009
  • This study aims to investigate the residual strength of sandwich composites with Al honeycomb core and carbon fiber face sheets after the quasi-static indentation damage by the experimental investigation. The 3-point bending test and the edge-wise compressive strength test were used to find the mechanical properties, and the quasi-static point load was applied to introduce the simulated damage on the specimen. The damaged specimens were finally assessed by the 3-point bending test and the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the quasi-static indentation. The both test results showed that the residual strength of the damaged specimen was decreased according to increases of the damaged depth.

A Constitutive Equation with Impulse-Momentum Theory for the Expanded Polypropylene (충격량-운동량 이론을 접목시킨 발포 폴리프로필렌의 구성방정식)

  • Kim, Byeong Kil;Cho, Jae Ung;Jeong, Kwang Young;Kim, Nam Hoon;Oh, Bum S.;Hahn, Youngwon;Cheon, Seong S.
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.91-97
    • /
    • 2016
  • In this paper, impulse-momentum theory was coupled to a constitutive equation both for implementing quasi-static and impact characteristics of EPP (Expanded polypropylene). Also, parameters which have physical meanings were expressed as functions of relative density. Simultaneous nonlinear Newton-Raphson method was applied to find the proper values for parameters in the constitutive equation along with quasi-static test data. Results from the impulse-momentum theory coupled constitutive equation showed good agreement with experimental data and the potential to be applied to different material type polymeric foam.

An Experimental Study on the Absorbed Energy of Polymeric Foam According to Different Mass and Impact Velocity Based on the Constant Impact Energy (동일 에너지 조건하에 충격체 질량과 속도변화에 따른 발포 고분자의 흡수 에너지에 관한 실험적 연구)

  • Kim, Byeong-Jun;Kim, Han-Kook;Cheon, Seong S.
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.42-46
    • /
    • 2014
  • In the present study, impact tests were carried out to investigate the crashworthy behaviour of the expanded polypropylene under the constant incident energy (100 J and 200 J) with five different combinations of striker mass and velocity. Also, preliminary quasi-static test was performed to obtain basic characteristics of the expanded polypropylene. MTS 858 and Instron dynatup 9250 HV were used for the quasi-static test and impact tests, respectively. In consequence, it was found that the impact energy absorption characteristics of the expanded polypropylene was more influenced by the striker mass instead of the velocity of the striker.

Experimental Investigation on the Behaviour of CFRP Laminated Composites under Impact and Compression After Impact (CAI) (충격시 CFRP 복합재 판의 거동과 충격후 압축강도에 관한 실험적 연구)

  • Lee, J;Kong, C;Soutis C.
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.66-73
    • /
    • 2003
  • The importance of understanding the response of structural composites to impact and CAI cannot be overstated to develop analytical models for impact damage and CAI strength predictions. This paper presents experimental findings observed from quasi-static lateral load tests, low velocity impact tests. CAI strength and open hole compressive strength tests using 3 mm thick composite plates($[45/-45/0/90]_{3s}$- IM7/8552). The conclusion is drawn that damage areas for both quasi-static lateral load and impact tests are similar and the curves of several drop weight impacts with varying energy levels(between 5.4 J and 18.7 J) follow the static curve well. In addition, at a given energy the peak force is in good agreement between the static and impact cases. It is identified that the failure behaviour of the specimens from the CAI strength tests was very similar to that observed in laminated plates with open holes under compression loading. The residual strengths art: in good agreement with the measured open hole compressive strengths. considering the impact damage site area, an equivalent hole. The experimental findings suggest that simple analytical models for the prediction of impact damage area and CAI strength can be developed on the basis of the failure mechanism observed from the experimental tests.

Application of the EPU Constitutive Equation to expanded Polypropylene under Dynamic Loading (동하중을 받는 발포 폴리프로필렌에 대한 EPU 구성 방정식 적용)

  • Jeong, Kwang Young;Kim, Byeong-Jun;Cheon, Seong S.
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.135-140
    • /
    • 2014
  • A constitutive equation, which was suggested for describing the compressive deformation behaviour of the expanded polyurethane, was applied to the expanded polypropylene under dynamic loading. This equation consists of seven parameters, five of which are obtained by fitting the stress strain curve obtained from the quasi-static compression test at the lowest base strain rate. The remaining two parameters are able to be determined by fitting the curve from the compression test at different two stage strain rates. In order to check the eligibility of the equation at high strain rate, the impact test was performed and the results were compared to the analytical constitutive equation results for the expanded polypropylene with expansion ratios of 30 and 40 times, respectively.

Finite Element Modeling of Low Density Polyurethane Foam Material (저밀도 폴리우레탄 포옴재료의 유한요소 모델링)

  • 김원택;최형연
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.183-188
    • /
    • 1996
  • The compressive stress-strain response of Low Density Polyurethane foam material is modeled using the finite element method. A constitutive equation which include experimental constants based on quasi-static and dynamic uniaxial compression test is proposed. Impact test with different impactor masses and velocities are performed to verify the proposed model. The comparison between impact test and finite element analysis shows good agreements.

  • PDF

An analysis of the Reacture Inutuation of falling type Impact Test for toughened Rigid Plastics (인성의 강소성 플라스틱 재료에 대한 낙하충격 시험의 파괴개시에 관한 연구)

  • 김진우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.385-393
    • /
    • 1984
  • 본 연구에서는 다트식 낙하충격 시험에 있어서 인성의 강소성 플라스틱 재료 의 준정적 선형의 점탄성 모델이 구성되어 해석되었다. 완화계수함수, E(t)=E$_{f}$ +(E$_{o}$ -E$_{f}$ )e$^{-t/tR}$ 형태의 점탄성 재료의 수정된 Maxwell요소모델을 근거 로 충격속도, 파괴에너지, 임계응력등의 중요변수들의 상대적 종속성이 근사계산으로 평가되었다.