• Title/Summary/Keyword: 준정적해석

Search Result 90, Processing Time 0.026 seconds

A Discussion on the Fluid Dynamics of the Horizontally Rotating Power Generator (수평면 회전식 풍력발전기에 대한 유체역학적 검토)

  • 이상무;김성근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.53-56
    • /
    • 2000
  • This paper discusses the horizontally rotaling wind power generator. Quasi static analysis are applied to performance. Translational velocity. which varies on the distance from the rotating wind power generator is effective in speed. In high rotation. the reverse torque reduces the total effective troque. It is recommended to giver efforts to redutorque for the acceptavle performance of the horizontallv rogatting tvpe generator.

  • PDF

Structural Behavior of RC Beams with Headed Bars using Finite Element Analysis (유한요소해석 기반 확대머리 이형철근 상세 따른 RC보의 구조성능 효과 분석)

  • Kim, Kun-Soo;Park, Ki-Tae;Park, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, the structural behavior by the details of the lap region with the headed bar was estimated through finite element analysis. To solve the finite element analysis of the anchorage region with complex contact conditions and nonlinear behavior, a quasi-static analysis technique by explicit dynamic analysis was performed. The accuracy of the finite element model was verified by comparing the experimental results with the finite element analysis results. It was confirmed that the quasi-static analysis technique well reflected the behavior of enlarged headed bar connection. As a result of performing numerical analysis using 21 finite element models with various development lengths and transverse reinforcement indexes, it was confirmed that the increase of development length and transverse reinforcement index improved the maximum strength and ductility. However, to satisfy the structural performance, it should be confirmed that both design variables(development length and transverse reinforcement index) must be enough at the design criteria. In the recently revised design standard(KDS 14 20 52 :2021), a design formula of headed bar that considers both the development length and the transverse reinforcing bar index is presented. Also the results of this study confirmed that not only the development length but also transverse reinforcing bars have a very important effect.

A Study on Program Development for Static Design Factor of Automotive Suspension System (자동차 현가장치의 정적설계인자 계산을 위한 프로그램 개발에 관한 연구)

  • Kim, Kwang-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.283-289
    • /
    • 2017
  • In this study, a general program has been developed to calculate the static design factor of a vehicle suspension system. The partial derivatives of Jacobians for constraint equations are calculated using the symbolic technique. In the commercial program, finite difference method is used to calculate the Jacobian matrix of Jacobian. But in this study, it is calculated by using the symbol calculation method to precisely consider it. The calculated Jacobian matrix for the system has proved its accuracy through the solution of the numerical example. A simulation was performed for a double wishbone suspension of a 1/4 vehicle. The result can be used to calculate the static design factor of the suspension, and also add a convergence module that can perform virtual tests.

Moving Support Elements for Dynamic Finite Element Analysis of Statically Determinate Beams Subjected to Support Motions (지점운동을 받는 정정보의 동해석을 위한 동지점 유한요소 개발)

  • Kim, Yong-Woo;Jhung, Myung Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.555-567
    • /
    • 2013
  • A finite element formulation for a Rayleigh-damped Bernoulli-Euler beam subjected to support motions, which accompanies quasi-static rigid-body motion, is presented by using the quasi-static decomposition method. Moving support beam elements, one of whose nodes is coincident with the moving support, are developed to represent the effect of a moving support. Statically determinate beams subjected to support motions can be modeled successfully by using moving support elements. Examples of cantilever and simply-supported beams subjected to support motions are illustrated, and the numerical results are compared with the analytical solutions. The comparison shows good agreement.

Analysis of Body Induced Current in Middle Frequency Range Using Quasi-Static FDTD (중간주파수 대역에서 준정적(Quasi-Static) FDTD 기법을 이용한 인체 유도전류 분석)

  • Byun, Jin-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.141-149
    • /
    • 2009
  • In this paper, quasi-static FDTD method is implemented by FORTRAN programming, and it is used for analysis of body induced current in middle frequencies. The quasi-static FDTD program is validated by comparing the calculation result with analytic solution of the test model, to which it is difficult to apply conventional FDTD. It is confirmed that the time-step is reduced by $5.68{\times}10^6$ times. Using validated numerical technique, body induced current distribution in high resolution 3-D human model is calculated for 20[kHz] magnetic field exposure and 1[MHz] electric field exposure. Also, the effect of grounding condition of both feet on the distribution and amplitude of the induced current is analyzed. It is expected that this research can be applied to various fields including safety assessment of body induced current and development of diagnosis devices using bio-electricity.

Performance Assessment of Solid Reinforced Concrete Columns with Triangular Reinforcement Details (삼각망 철근상세를 갖는 중실 철근콘크리트 기둥의 성능평가)

  • Kim, Tae-Hoon;Lee, Seung-Hoon;Lee, Jae-Hoon;Shin, Hyun Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • The purpose of this study was to investigate the performance of solid reinforced concrete columns with triangular reinforcement details. The proposed reinforcement details has economic feasibility and rationality and makes construction periods shorter. A model of solid reinforced concrete columns with triangular reinforcement details was tested under a constant axial load and a quasi-static, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. The used numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated. As a result, proposed triangular reinforcement details for material quantity reduction was superior to existing reinforcement details in terms of required performance.

Instantaneous Environmental Noise Simulation of High-speed Train by Quasi-stationary Analysis (준정적 해석을 이용한 고속 열차의 순간 환경소음 시뮬레이션)

  • Cho, Dae-Seung;Kim, Jin-Hyeong;Choi, Sung-Won;Chung, Hong-Gu;Sung, Hye-Min;Jang, Seung-Ho;Koh, Hyo-In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.1003-1009
    • /
    • 2012
  • An instantaneous environmental noise simulation method emitted by a moving high-speed train by quasi-stationary analysis is proposed in this study. In the method, the propagation attenuations from stationary point sources on segmented railways to a receiver are calculated using a general purpose environmental noise prediction program ENPro based on the ISO 9613-2 method. Then, the instantaneous environmental noise at a receiver due to a moving high-speed train considering convection effect is evaluated with the information on the propagation attenuations from the instantaneous train location to the receiver and the sound power levels and directivity of stationary point sources evaluated by German Schall 03 (2006). To demonstrate the validity of proposed method, simulated and measured time history of instantaneous noise for KTX-I and KTX-II on running are compared and the results show that the method can be utilized for the train noise source identification as well as the simulation of instantaneous environmental noise emitted by a high-speed train.

Natural Convection During Directional Solidification of a Binary Mixture (이성분 혼합액의 방향성 응고에서 자연 대류)

  • Hwang, In Gook;Choi, Chang Kyun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.174-178
    • /
    • 2009
  • A mushy layer of dendritic crystals is often formed during solidification of a binary mixture. Natural convection in the mushy layer is analyzed by using the propagation theory we have developed. The critical Rayleigh numbers for the onset of convection are evaluated numerically using the self-similar stability equations based on Emms and Fowler's model. The present results approach those from quasi-static stability analysis in the limit of a large superheat or a small growth rate of the mushy layer.

Damage Value Calculation of Fuel Tank Considering Modal Characteristics (모달특성을 고려한 Fuel Tank의 손상도 계산)

  • Han, Woo-Sub;Park, Kwang-Seo;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.534-538
    • /
    • 2008
  • The vehicle system is exposed to random source in service. Therefore, it is important to consider dynamic effect of the system. But, fatigue analysis is traditionally performed by using time signal of loading. To obtain dynamic effect of resonance, we carried out resonance durability analysis with frequency response and the dynamic load on frequency domain. The study shows that the damage considering resonant frequency of fuel tank system can be effectively estimated.

  • PDF

Quasi-Static Equilibrium of a Propeller Shaft in a Hydrodynamic Oil-Lubricated Stern Tube Bearing (윤활유(潤滑油) 선미관(船尾管) 베어링 축계(軸系)의 준정적(準靜的) 평형상태(平衡狀態)에 관한 연구(硏究))

  • S.Y.,Ahn;S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.51-61
    • /
    • 1989
  • Recently, the growth in the propulsion power and propeller size of typical energy saving ships has resulted in severe damages of the oil-lubricated stern tube bearing. Consequently, a more rational analytical method for the design of the shafting system is required. In this paper an analytical method applicable to the design of the oil-lubricated stern tube bearing and shafting system is presented. The method consists of the finite element analysis of the shafting system and the oil film hydrodynamics. The shafting system is modeled as a three-dimensional problem using beam elements taking account for the steady components of thrust, lateral forces and moments of the propeller as well as the elastic foundation effects. The oil film hydrodynamics is modeled as a two-dimensional problem. Equal and retangular elements employing hourglass control method are used for the construction of the oil film fluidity matrix. To search the quasi-static equilibrium position between the propeller shaft and the oil film, an optimization technique is employed. Some numerical results based on the proposed method are compared with some measured and numerical data available. They show acceptable agreements with the data.

  • PDF