정밀지오이드를 구축하기 위하여 육상, 해상, 항공, 위성 중력측정 방법으로 다양화되고 측정 기술이 발전되어 고해상도 고정밀도의 중력자료 확보가 가능해졌다. 정밀지오이드의 구축은 별도의 수준측량 없이 GNSS 측량을 통해 표고를 빠르고 편리하게 결정할 수 있으며 우리나라는 2014년부터 국토지리정보원에서 GNSS를 기반으로 한 높이측량 정확도를 향상시키기 위해 합성지오이드 모델을 개발하고 있다. 본 연구에서는 공공측량의 GNSS높이측량을 검증하기 위하여 기존의 고시된 공공기준점을 선점하여 GNSS높이측량 결과와 비교 분석하였다. 실험은 연구보고서 등에서 정밀도가 낮은 지역으로 제시되거나 정밀도가 낮을 것으로 예상되는 연안, 접경, 산악지형의 공공기준점에 대하여 GNSS높이측량을 수행하고 정밀도를 분석하였다. GNSS높이측량 검증을 위해 공공기준점 GNSS높이측량 기지점으로 사용될 주변 통합기준점의 GNSS 타원체고를 점검하였다. 점검된 통합기준점을 기준으로 공공기준점의 GNSS 타원체고를 산출하고 KNGeoid18 모델을 이용하여 표고를 계산하여 직접수준측량 표고결과와 비교하였다. 분석 결과 연안, 접경, 산악 지역 공공기준점의 GNSS 높이측량 결과가 3·4급 공공수준측량 정확도에 만족하는 것으로 나타났다. 이를 통하여 사용자가 요구하는 높이 정확도에 따라 기존의 직접수준측량보다 GNSS 높이측량이 효율적으로 이용될 수 있으며, KNGeoid18도 자율주행자동차, 무인항공기 등 다양한 분야에서 활용될 수 있을 것으로 판단된다.
본 연구는 자율주행을 위한 정밀지도 구축 및 신속갱신을 위한 다중카메라 기반의 MMS (Mobile Mapping System)기술개발을 목표로 한다. 고가의 라이다 센서를 대체하고 긴 처리시간을 단축하기 위해 다수의 카메라를 적용하고 실시간 데이터 전처리를 통해 저가이면서 효율적인 MMS를 개발하고자 한다. 이를 위해 다중카메라 저장 기술개발, 다중카메라 시각동기화 기술개발, MMS 시제품 개발을 수행하였다. 다중의 카메라로부터 취득되는 고속영상의 실시간 JPG압축저장을 위해 엔진을 선정하고 저장모듈을 개발하였으며, 다중영상이 촬영된 정확한 시간을 실시간으로 기록하기 위해 이벤트 및 GNSS (Global Navigation Satellite System) 타임서버 기반 시각동기화 방안을 개발했다. 그리고 각 부문별 요구사항을 바탕으로 MMS를 설계하고 시제품을 제작하였다. 마지막으로 제작된 다중카메라기반 MMS의 성능검증을 위해 실제 1,000km 도로에서 데이터를 취득하고 정량적 평가를 수행했고, 평가결과 시각동기화 성능은 1/1000초 이하를 나타내었으며, SFM영상처리를 통해 얻은 포인트 클라우드의 위치정확도는 5cm 내외를 나타냈다. 정량적 평가 결과를 통해 본 연구에서 개발된 다중카메라 기반 MMS기술이 정밀지도 구축 기준을 만족하는 성능을 나타내는 것을 알 수 있었고, 향후 정밀지도 구축 분야에서 특히 외산기술에 의존하고 있던 고가의 MMS를 대체하는데 기여할 것으로 판단된다.
교통사고 예방을 위해 경찰 및 지자체 등 정부기관에서는 교통시설 및 도로시설의 개선사업을 추진하여 교통 위해 요소를 제거하고 편안한 도로 환경을 조성하는데 노력하고 있다. 이를 위해 도로 및 교통시설을 개선 및 조정하며, 교통사고 잦은 지역의 개선사업이 대표적인 사업이다. 교통사고 잦은 지역의 개선사업은 담당자와 관계자의 주관에 따라 사업별, 지역별 편차가 발생하고 있으며, 우선순위 도출 등에 민원 및 주관성이 반영되어 사업의 효율성에 한계가 발생하고 있다. 이를 위해 교통사고 잦은 곳 개선사업의 효과가 높은 대표사업을 대상으로 도로여건, 교통여건, 사고여건 등을 종합적으로 고려하여 사업 대상지의 개선방향을 추정하는 연구를 진행하였다. 연구결과 개선사업 추정 정확도가 88% 수준으로 분석되었으며, 개선방향을 추정하는데 교통량, 사고율, 사고심각도 순으로 높은 관계가 있는 것으로 분석되었다.
정밀도로지도는 자율주행차의 기본 인프라로 활용되어 최신 도로정보가 신속하게 반영되어야 한다. 하지만 현재 정밀도로지도 공정 중 객체 도화 및 구조화 편집과정이 수작업으로 이루어지며 주요 구축 대상인 도로 노면선 표시의 레이어를 생성하는데 가장 오랜 시간이 소요된다. 이에 본 연구에서는 선행 연구에서 기학습된 포인트넷(PointNet) 모델을 통해 색상 유형(백색, 청색, 황색)이 예측된 도로 노면선 표시의 포인트 클라우드를 입력 데이터로 활용하였고, 이를 기반으로 본 연구에서는 도로 노면선 표시 레이어의 도화 및 구조화 편집을 자동화하는 방법론을 제안하였다. 제안한 방법론을 통해 구축한 3차원 벡터 데이터의 활용성을 검증하기 위해 정밀도로지도 품질검사 기준에 따라 정확도를 분석하였다. 벡터 데이터의 위치정확도 검사에서 수평 오차와 수직 오차에 대한 평균제곱근오차(RMSE: Root Mean Square Error)는 0.1m 이내로 나타나 적합성을 검증하였으며, 구조화 편집 정확도 검사에서 선표시 유형과 선규제 유형의 구조화 정확도가 모두 88.235%로 나타나 활용성을 검증하였다. 따라서, 본 연구에서 제안한 방법론으로 정밀도로지도를 위한 도로 노면선 표시의 벡터 데이터를 효율적으로 구축할 수 있는 것을 알 수 있었다.
최근의 LiDAR(Light Detection And Ranging) 센서는 실시간으로 주변에 있는 물체를 스캔하는 데 사용된다. LiDAR 센서를 이용하여 주변 환경을 스캔할 경우 감지되었던 사물들에 대한 변화를 감지하고 실시간으로 움직이는 물체를 인식할 수 있다. 센서들의 제작 비용이 낮아지면서 LiDAR는 중요시설의 경계, 스마트시티, 자율주행차 등 다양한 산업 분야에서 다양하게 활용되고 있다. 이러한 LiDAR 데이터는 실시간에 사물을 스캔하는 만큼 입력 데이터의 크기가 크다. 따라서 이러한 LiDAR를 활용하는 시스템에서는 이러한 대용량 데이터의 실시간 처리가 병목이 될 수 있어서 이러한 대용량 처리에 대한 대안이 필요하다. 본 논문에서는 엣지 컴퓨팅 서버를 이용하여 방대한 포인트 클라우드를 압축하여 빠르게 처리하는 엣지 컴퓨팅 기법을 제안한다. LiDAR 센서의 레이저의 반사 범위가 제한되어 있으므로 실시간으로 넓은 영역을 스캔하기 위해서는 여러 대의 라이다를 사용해야 한다. 따라서 실시간으로 물체를 감지하거나 인식하기 위해서는 여러 개의 LiDAR 센서에 대한 데이터를 한 번에 처리해야 한다. 에지 컴퓨터는 데이터 가속을 수행하기 위해 포인트 클라우드를 효율적으로 압축하고 모든 데이터를 메인 클라우드에서 실시간에 압축해제하여 사용할 수 있도록 설계되었다. 이를 통해 사용자는 시스템을 중앙에서 병목 없이 실시간에 LiDAR 센서들을 제어할 수 있다. 실험에 사용된 시스템은 이러한 엣지 컴퓨팅 서비스를 적용함으로써 기존 클라우드 기반 방식에서 문제였던 데이터 병목 현상을 효과적으로 해결하였다.
최근 메타버스, 스마트시티, 디지털트윈, 자율주행차, 도심항공모빌리티 등 분야에서 3D공간객체모델 관련 정보 요구는 증가될 것이다. 공간객체에 대한 3D모델 구축은 위성·항공·지상플랫폼과 같은 다양한 장비와 모델링·인공지능·영상정합 등의 기술로 가능하다. 하지만 갱신이 필요한 공간객체를 신속하게 탐지하고 DB화하는 작업은 쉽지 않다. 이 연구에서는 공간정보(도형)과 속성을 기반으로 주소코드, 층수, 건물명, 면적 등의 매칭요소를 이용하여 건물융합DB와 변화탐지건물DB를 구축 지원할 수 있고 갱신이 필요한 객체선정의 적합성을 검증할 수 있는 시스템 프로토타입을 개발하였다. 건물융합DB 구축 시 일부 건물의 경우, 공간정보와 속성의 융합불가 및 실패 사례가 발생하여, 매칭율이 약 80%로 낮게 나타났다. 이것은 특별히 시범사업지역 내 많은 건물객체에 대한 속성정보가 누락된 것에 기인하는 것으로 판단된다. 이 연구는 3D공간객체 모델의 신속한 갱신을 위한 효율적인 드론 촬영계획 수립을 지원하여 공간객체의 중복 및 불필요한 구축 등을 사전에 방지함으로써 객체 구축 절차 개선 및 비용 절감에 크게 기여할 것이다.
과거 산업화 이후 자동차 산업은 내연기관 중심의 지속적인 성장을 하였으나, 최근 4차 산업혁명으로 큰 변화를 맞이하고 있다. 대다수의 기업들이 전기 자동차, 자율주행으로의 전환을 준비하고 있으며, 현시점에서 국내와 국외의 미래 자동차 연구동향을 비교 분석할 필요가 있다. 이에 본 연구에서는 미래 자동차 트렌드를 대표하는 CASE(Connectivity, Autonomous, Sharing, Electrification)와 관련된 키워드가 포함된 국내 4,002건, 국외 68,372건 논문을 수집하여 LDA 알고리즘 기반의 토픽모델링을 수행하였으며, 국내외 미래 자동차 연구동향을 비교 분석하여 정책적 시사점을 제시하였다. 분석 결과 국내의 경우 교통 인프라, 도시 내 교통효율, 교통정책 등과 같은 거시적인 측면에서의 연구가 주를 이루는 것으로 나타났으며, 국외는 객체인식, 사물인터넷, 전기자동차 소음 등의 차량기술과 관련된 연구가 활성화되고 있음을 확인할 수 있었다. 이를 통해 국내 공유자동차 부문에 있어 MaaS(Mobility-as-a-Service)와 관련한 정부의 기술지원이 필요하고 교통수단별 데이터 개방 필요성 등에 대하여 제시하였고, 이러한 분석결과는 미래 자동차 산업을 위한 기초자료로 활용될 수 있을 것으로 판단된다.
건설현장에서 근로자의 고령화, 저출산으로 인한 신규 인력감소와 숙련된 작업자 부족 등의 문제가 심화되고 있다. 이에 따라 전통적인 건설기술을 첨단 디지털 기술로 대체하여 생산성, 안전성, 및 품질 등을 향상시킬 수 있는 스마트 건설 기술 연구가 최근 정부 주도로 개발되고 있다. 특히, 도로 건설 장비 중에서 노면 평탄화를 주로 수행하는 모터 그레이더는 선형적이고 반복적인 공사로 자동화 기술의 적용이 반드시 요구되는 건설 기계이다. 시공 자동화를 통해 사람이 작업하기 힘든 험지나 야지 등과 같은 위험한 환경에서도 손쉽게 장비를 제어할 수 있는 원격제어 기술과 효율적인 작업 경로와 작업 조건에 따라 장비를 운영하는 경로 추종 및 자동화 작업 기술 등을 적용하여 기존의 운전자가 작업하는 것보다 공사 기간을 단축할 것으로 예측된다. 본 연구에서는 무인·자동화 기술을 적용하기 위한 스마트 모터 그레이더의 하드웨어 및 소프트웨어 구성 기술을 소개하고 기존 그레이더의 토공 작업 방식을 분석하였다. 이를 토대로 스마트 모터 그레이더의 경로 패턴 및 블레이드 제어 방식 등에 대한 적용 방안을 제시하였다. 더불어 블레이드 제어 성능과 작업 시나리오에 따른 경로점 기반의 경로 추종 성능을 시험을 통해서 검증하였다.
최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통 안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만장의 대형차, 소형차, 중형차 별 적재 불량 차량과 일반차량으로 구분 된 데이터 셋 중 종류별로 제공되는 CCTV, 블랙박스, 카메라 시점의 적재 불량 차량 데이터 셋을 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.
최근 전 세계적으로 빅데이터, AI, IoT, 자율주행, 디지털트윈 등 스마트시티 솔루션이 발달하면서 다양한 스마트기기와 SNS가 확산하고 사람들이 도처에 남긴 행적이 기록되면서 규모를 가늠할 수 없을 정도로 많은 정보와 데이터가 생산되는 '빅데이터' 환경을 활용한 스마트시티 구축이 활발하게 진행 중이다. 본 연구의 목적은 4차 산업혁명에 따른 지속가능한 스마트시티의 도시정보·대중교통 접근성에 있어 시민의 교통 편의성 향상 및 효율적인 정책수립을 위해 빅데이터 기반의 객관적이고 체계적인 분석 모델을 개발하고, 지속가능한 도시의 공공·민간 DB를 활용한 빅데이터 기반 대중교통 접근성 및 정책관리 플랫폼 구축의 방법론을 도출하는데 있다. 이를 위해 광주광역시를 대상으로 상세생활권을 구분하고 기초 생활편의시설 접근성 및 빅데이터 기반 대중교통 시스템을 분석하였다. 그 결과, 1) 대중교통 네트워크 평가를 위한 빅데이터 활용, 2) 빅데이터 기반의 교통 수단/서비스 의사결정지원, 3) 도심 교통 네트워크 모니터링 서비스 제공, 4) 주차수요 발생원 분석 및 개선방안 제공과 같은 빅데이터 기반 도시정보·대중교통 접근성 플랫폼 구축을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.