• Title/Summary/Keyword: 주행형 이동 로봇

Search Result 92, Processing Time 0.023 seconds

Navigation of Unmanned Vehicle Using Relative Localization and Magnetic Guidance (상대위치인식과 자계안내를 이용한 무인주행차량의 주행기법)

  • Lee, Yong-Jun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.430-435
    • /
    • 2011
  • In this paper, a navigation technology of an unmanned vehicle using relative localization and magnetic guidance is proposed. Magnetic guidance system had been developed as a robust autonomous driving technology as long as magnetic fields on the path are detected. Otherwise, if magnetic fields were not detected due to some reasons, the vehicle could not drive. Therefore, in order to overcome the drawback, we propose that relative localization would be combined to magnetic guidance system. To validate the usefulness of the proposed method, a robotic vehicle was set up with the magnetic guidance system and the relative localization. In addition, the unmanned driving test was realized on the road without the magnetic fields so that the proposed method is verified by the experiment.

Real-time Control System for Mobile Robots and Path Tracking Control Algorithm (이동로봇의 실시간 주행제어를 위한 제어시스템 설계 및 경로 추종제어 방법)

  • 고경철;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1497-1508
    • /
    • 1993
  • Real-time mobile robot controllers usually have been designed focused on control theory without paying attention to the importance of system integration. This paper demonstrates that autonomous mobile robots require a real-time controller with a wide range of capabilities in addition to control theory. An architectural frame work supporting these capabilities has been designed in actual hardware environments. Individual modules such as a path planner, a path tracking controller, position estimators, wheel controllers and other cruical elements have been successfully integrated into the control system using this frame work. The overall performance of the system was investigated via a series of tracking experiments with a prototype mobile robot named LCAR deveoped in the laboratory. The context of the research involves the architecture, its implementation and experimental results.

A Study on the Convenience and Safety of Walking Assistance Robot as a Slope Way (보행보조로봇의 경사로 주행을 위한 보행 편리성 및 안전성 연구)

  • Lee, Dong-Kwang;Hong, Jung-Shik;Kwon, Oh-Sang;Lee, Eung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.337-338
    • /
    • 2008
  • 2008년 현재 우리나라는 10%의 인구가 60세 이상인 이른바 고령사회에 접어들었다. 노인 인구의 증가로 인해 노인이 여가생활 또는 일반생활을 보조하기 위한 보행 보조기에 대한 관심이 증가되고 있다. 대부분 동력이 없는 보행보조기를 사용하고 있으며 이러한 기구는 경사로 공간 또는 힘이 약한 노인들에게 취약성을 가지고 있다. 이에 동력형 보행보조로봇에 관심이 증가하고 있다. 동력형 보행보조로봇 역시 경사로에 있어서 편리성과 안전성을 높이기 위한 연구가 필요한 실정이다. 이에 본 논문에서는 보행보조로봇이 경사로에 진입 하였을 경우 기울어진 경사로의 정도를 인식하여 모터를 제어 한다. TILT 센서를 이용하여 기울이짐 정도를 측정 하였고, 또한 로봇의 전류 실시간으로 체크하여 로봇의 안전성을 향상 하였다. 제어 시스템 구성은 사용자의 보행의지를 파악하기위해 FSR 센서를 부착하여 조향장치로 사용하였으며, 경사로를 인식하기 위해 Liquid 타입의 TILT 센서를 사용하였으며, 모션 제어를 위해 DSP를 사용하였다. 본 제어 시스템을 보조보행로봇에 적용하였을 때, 보행보조로봇이 오르막 경사로에 진입시 기존보다 힘을 적게 사용하여 경사로를 진행하였으며, 경사로에서 브레이크 작동속도가 향상 되었다. 또한 내리막 경사로에서는 모터의 힘을 적게 사용하고 중력의 힘을 사용하여 이를 통해 전류의 소비량을 개선 하였다.

  • PDF

Application of Intelligent Wearable Computing (지능형 웨어러블 컴퓨팅의 응용)

  • Kim, Seong-Joo;Jung, Sung-Ho;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.304-309
    • /
    • 2004
  • This work proposes the wearable and intelligent system to control mobile vehicle instead of user. The system having the ability of assistance as well as portable can be applied to various controller. It is possible to observe the state of mobile vehicle and have a good command of robot instead of human. In this paper, the wearable system operating the mobile vehicle by deciding the velocity and rotation angle that are demanded for collision avoidance with the obtained driving information from mobile vehicle is implemented. To make the proposed wearable system have an intelligence, the hierarchical fuzzy logic and neural network are used.

The Study of Methods for Improve the Linearity of the Walking Assistant Robot to Move on Lateral Slopes (횡단경사면에서 지능형 보행보조로봇의 직진성 향상 방안 연구)

  • Lee, Won-Young;Eom, Su-Hong;Jang, Mun-Suck;Kwon, O-Sang;Lee, Eung-Hyuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.261-268
    • /
    • 2013
  • In this paper, we propose the algorithm that improves the linearity of the walking assistant robot on lateral slopes. The walking assistant robot goes out of the course due to the rotational moment which is caused by the weight of the robot and the slope. To compensate this, we give the weight to each driving axle after comparing the real rotational angular velocity with the target rotational angular velocity which is entered by an user. The results of applying the algorithm to the real walking assistant robot show that the yaw axis deviation of the robot without the algorithm diverges, but the yaw axis deviation of the robot with the algorithm lies within 20cm, which can be recognized as stable. In addition, the changing rate of the course deviation is stabilized and shows no more course deviation, after moving 300cm.

The Control Method of Rehabilitation Assistance Mobile Robot Using Force-Reflection Joystick (힘 반향 조이스틱을 이용한 재활보조용 이동 로보트의 제어 기법)

  • 이응혁;권오상;김병수;민홍기;장원석;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.447-456
    • /
    • 1997
  • When the disabled is operating a rehabilitation assisting system with a joystick by himself, unlike in the case of a normal person, tremor with joystick control or instant miscontrol can often occur. If these misoperations should be directly relayed to the system, shaking or malfunction of the mobile rehabilitation assisting system might be the result. The safety of the disabled is of prime concern. To solve this problem, that is, to prevent the miscontrol of the disabled operator and avoid crashes into his or her surroundings, we propose the force-reflection locomotion algorithm with the joystick. This method uses ultrasonic sensors to measure the distance between the object and mobile robot. Based on the reception of sensory data, the necessary torque is applied via the joystick to the attatched motor. To confirm the effectiveness of the proposed method, the subjects on the reflected force by the dynamic characteristics of the joystick and the reflected force by the distance information are tested Even though there are some differences in human dexterity, we confirmed the fact that the information from the obstacles was relayed to the operator via the joystick and resulted in an improved operational performance and safety level with regard to those obstacles.

  • PDF

A self-driving Robot for target place using reinforcement learning (목적지로 자율 주행 가능한 강화 학습 로봇)

  • Im, Kyeong-Uk;Son, Ji-Seon;Choi, Hyeon-Dong;Weon, Ill-yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.745-748
    • /
    • 2021
  • 가상 환경의 시뮬레이션을 이용해 지능형 로봇에 강화 학습 기법을 적용하는 접근법은 실제 세계의 로봇들의 학습에 유용하다. 우리는 이러한 방법을 적용해서 장애물을 회피하고, 로봇이 특정 목표물을 인식하면 목표물로 자율적으로 이동하는 알고리즘을 개발하였다. 제안된 방법의 유용성 검증은 구현과 실험으로 확인하였다.

Real-time Measurement Model of Indoor Environment Using Ultrasonic Sensor (초음파 센서를 이용한 실내 환경 실시간 계측 모델)

  • Lee Man hee;Cho Whang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.481-487
    • /
    • 2005
  • In order to increase the autonomous navigation capability of a mobile robot, it is very crucial to develop a method for recognizing a priori known environmental characteristics. This paper proposes an ultrasonic sensor based real-time method for recognizing a priori known indoor environmental characteristics like a wall and corner. The ultrasonic sensor consists of an ultrasonic transmitter and two ultrasonic receivers placed symmetrically about the transmitter. Unlike previous methods the information obtained from the sensor is processed in real-time by extended Kalman filter to be able to correct the position and orientation of robot with respect to known environmental characteristics.

Design of automatic cruise control system of mobile robot using fuzzy-neural control technique (퍼지-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계)

  • 한성현;김종수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1804-1807
    • /
    • 1997
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learnign architecture. It is proposed a learning controller consisting of two neural networks-fuzzy based on independent reasoning and a connecton net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Design of Experimental Test Tracks for Odometry Calibration of Wheeled Mobile Robots (차륜형 이동로봇의 오도메트리 보정을 위한 실험적 주행시험경로 설계)

  • Jung, Changbae;Moon, Changbae;Jung, Daun;Chung, Woojin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.160-169
    • /
    • 2014
  • Odometry using wheel encoder is a common relative positioning technique for wheeled mobile robots. The major drawback of odometry is that the kinematic modeling errors are accumulated when the travel distance increases. Therefore, accurate calibration of odometry is required. In several related works, various schemes for odometry calibration are proposed. However, design guidelines of test tracks for odometry calibration were not considered. More accurate odometry calibration results can be achieved by using appropriate test track because the position and orientation errors after the test are affected by the test track. In this paper, we propose the design guidelines of test tracks for odometry calibration schemes using experimental heading errors. Numerical simulations and experiments clearly demonstrate that the proposed design guidelines result in more accurate calibration results.