• 제목/요약/키워드: 주행알고리즘

검색결과 883건 처리시간 0.025초

LASPI: 지원점 보간법을 이용한 H/W 구현에 용이한 스테레오 매칭 방법 (LASPI: Hardware friendly LArge-scale stereo matching using Support Point Interpolation)

  • 박상현;기미레 디팍;김정국;한영기
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.932-945
    • /
    • 2017
  • 논문에서는 정류(Rectification), 디스패리티 추정(Disparity Estimation) 및 시각화를 포함한 스테레오 비전 프로세싱 시스템의 새로운 하드웨어 및 소프트웨어 아키텍처를 개발하였다. 개발된 지원점 보간법을 이용한 대형 스테레오 매칭 방법(LASPI)은 고화질 이미지의 지원점 밀도가 높은 영역에서의 디스패리티 매칭에 있어, ELAS 등 기존 스테레오 매칭 방법과 비교할 때, 디스패리티 맵에 대한 품질 수준을 유지하면서도 실시간 성능 지원 측면에서 우수하다. LASPI는 자율주행 자동차에 적용되는 장애물 인식 시스템, 거리 검출 시스템, 장애물 검출 시스템 등, 안전에 민감한 모듈 적용을 위해, 프레임 처리속도의 실시간성, 거리 값 분해 성능의 정확성, 낮은 리소스 사용 등, 요구조건을 충족하도록 설계 되었다. 개발된 LASPI 알고리즘은 H/W 병렬처리 구조와 4 단계 파이프라인으로 구성된 FPGA로 구현되었다. 148.5MHz 클럭의 Xilinx Virtex-7 FPGA 기반으로 구현된 시스템은 각종 실험을 통해, HD급 이미지 ($1280{\times}720$ 픽셀)에 대해 실차에 응용 가능한 디스패리티 맵을 산출하면서도 실시간 처리 요구 조건인 초당 30 프레임 처리가 가능함을 확인하였다.

인공지능 분야 국방 미래기술에 관한 실증연구 (An Empirical Study on Defense Future Technology in Artificial Intelligence)

  • 안진우;노상우;김태환;윤일웅
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.409-416
    • /
    • 2020
  • 4차 산업 혁명의 핵심 동력으로 각광받고 있는 인공지능은 고성능 하드웨어와 빅데이터의 활용, 데이터 처리기술, 학습방법 및 알고리즘의 발전에 따라 단순한 학문적 지식 수준을 넘어 스마트 공장, 자율주행 등 다양한 산업분야에서 활용되며 영역을 넓혀가고 있다. 국방 분야에서도 국방 예산 감축, 병역 자원 감소, 무인 전투체계의 보편화 등 안보 환경이 변화함에 따라 선진국을 중심으로 상황 인식, 결심 지원, 업무 프로세스 간소화, 효율적 자원 활용 등 인공지능을 국방 업무에 접목하기 위한 정책 및 기술에 대한 연구가 활발히 이루어지고 있다. 이러한 이유에서 잠재력 있는 미래 국방기술의 발굴 및 연구개발을 위해 기술주도형 기획과 조사의 중요성 또한 증대되고 있다. 본 연구에서는 미래 국방기술 도출을 위해 진행되었던 연구 자료를 바탕으로 인공지능 분야 미래기술에 관한 특성 평가지표를 분석하고 실증연구를 수행하였다. 이를 통해 국방 인공지능 분야 미래기술에서는 무기체계 적용성, 경제적 파급효과가 유망도와 유의미한 관련성을 나타낸다는 것을 확인할 수 있었다.

고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계 (Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle)

  • 황지환;김철수
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.579-584
    • /
    • 2017
  • 고속 철도 차량 댐퍼의 오일 씰은 열차 운행동안 외부 환경으로부터 유해한 오염을 막고, 댐퍼 내부에서 오일 누출을 방지하고자 사용되는 니트릴 부타디엔 고무 재질 부품이다. 오일 씰의 주요 고장원인인 누유는 본 댐퍼의 피로 파손을 일으킨다. 뿐만 아니라 본 오일 씰의 누적 손상은 궤도 불규칙과 캔트 등으로 열차 주행동안 반복적인 댐퍼의 상하 운동으로부터 로드와 본 부품 사이에 접촉력으로 인하여 발생한다. 따라서 본 오일 씰의 설계는 취약점에서 최대 주변형률을 최소화하는 것이 필요하다. 본 연구에서는 댐퍼의 내구성을 향상하기 위하여 다중 섬 유전자 알고리즘을 이용하여 오일 씰 단면형상에 대한 최적설계를 수행하였다. 오일 씰의 최적단면은 절차 자동화 / 최적설계 프로그램을 이용하여 본 연구의 최적설계와 비선형 유한요소해석의 통합절차에 따라 얻어진 것이다. 또한, 비선형 유한요소해석의 입력 자료로서, 본 고무의 비선형 물성 값은 말로우식으로 표현하였다. 취약지점인 오일 누유지점에서 최적단면의 오일 씰은 초기 형상과 비교할 때, 이 지점에서 최대 주변형률이 약 24% 감소함을 확인하였다.

전기버스를 위한 배터리 자동 교환-충전인프라 배치 최적화 모형개발 및 적용 사례 분석 (A case study on optimal location modeling of battery swapping & charging facility for the electric bus system)

  • 김승지;김원규;김병종;임현섭
    • 한국ITS학회 논문지
    • /
    • 제12권1호
    • /
    • pp.121-135
    • /
    • 2013
  • 전 세계적으로 지구온난화로 인한 환경문제가 심각한 위기로 인식되어지면서 세계 각국에서는 전 산업분야에 걸쳐 이산화탄소 배출을 줄이고자 노력하고 있다. 국내 에너지 부문 CO2 배출량의 약 20%를 차지하는 수송 분야의 이산화탄소 배출을 감소시키기 위해서는 전기자동차 보급 확산이 필수적이다. 최근 정부에서 전기자동차 보급 활성화를 위해 많은 노력을 기울이고 있으나 긴 충전시간과 배터리의 가격에 의한 비싼 차량가격, 짧고 불규칙한 운행거리와 부족한 충전 인프라 등으로 인하여 향후 전기자동차의 보급 확대는 매우 불투명한 상태이다. 이러한 단점을 해결하고 효과적으로 전기자동차를 보급할 수 있는 방법 중 하나가 바로 배터리 공용제 기반의 배터리 자동교환형 전기자동차 시스템이다. 이를 위해서는 배터리를 자동으로 교환해주는 시설인 배터리 교환소 (BSS: Battery Swapping Stations)가 필요하게 되는데, BSS는 배터리 교환을 통해 전기자동차가 긴 충전시간을 소모할 필요 없이 짧은 시간 내에 배터리를 충전하고 이동할 수 있도록 하는 시스템이다. 이러한 시스템을 대중교통, 특히 공공버스에 적용함으로써 보다 빠른 시간 안에 전기자동차를 보급, 확산시키는 것이 가능하다. 일반버스를 전기버스로 전환하여 버스 노선을 운영할 경우 전기버스가 중간에 멈추지 않도록 적절한 위치에 충전시설을 구축할 필요가 있다. 전기버스에 대한 충전시설은 버스 노선의 기 종점 및 기존 버스정류장에 추가로 설치하여 버스가 승객의 승 하차를 위해 정차할 때 신속하게 배터리를 교환할 수 있게 구축해야 한다. 본 연구에서는 전기버스를 위한 배터리 자동교환충전시설의 위치선정 문제를 Set Covering Problem에 적용하여 해결하였다. 배터리 충전 시 최대 주행거리를 영향권으로 설정하였으며 메타 휴리스틱 기법인 그리디 알고리즘을 활용하여 배터리 교환형 충전인프라 배치 최적화 모델을 개발하였고 현재 운영 중인 서울시의 버스노선을 대상으로 실제 충전시설의 위치를 선정하였다.

GPS 음영 환경에서 무선랜 기반 차량 위치 추정 연구 (Wireless LAN-based Vehicle Location Estimation in GPS Shading Environment)

  • 이동훈;민경인;김정하
    • 한국ITS학회 논문지
    • /
    • 제19권1호
    • /
    • pp.94-106
    • /
    • 2020
  • 근래의 위치 측위 방법으로 GPS(Global Positioning System) 위성정보를 활용하는 전파항법 방식을 많이 사용하고 있다. GPS 활용범위가 넓어지고 다양한 측위 정보를 기반으로 하는 분야가 생기면서 보다 높은 정확도를 얻기 위한 새로운 방법들이 요구되고 있다. 자율주행차의 경우 IMU(Inertial Measurement Unit)를 사용한 항법 시스템인 INS(Inertial Navigation System)와 차량 내부 센서를 이용한 DR(Dead Reckoning) 알고리즘을 사용하여 GPS의 정확도 저하나 음영지역에서의 위치 측정방법으로 사용하고 있다. 그러나 이러한 측위 방법은 대형화되는 빌딩 지역, 터널, 지하 주차장 등 다양한 음영지역과 시간이 지남에 따라 오차가 계속 증가하는 누적 기반 위치추정 방법의 한계로 인해 많은 문제 요소가 있다. 본 논문은 GPS 음영지역에서 차량의 위치 측위를 위해, 대중적 무선 통신인 WLAN을 이용한 Fingerprint 기법을 4개의 Anchor 형태로 AP(Access Point)와 지향성 안테나를 위치하여 넓은 지하 주차공간에서 효율적인 측위 방법을 제시하고 시간이 지남에 따라 주차된 차량이 이동하는 환경에서도 변화가 없는 위치 측위 결과를 입증하였다.

이중 랜드마크 인식 기반 AGV 이동 제어 (A Moving Control of an Automatic Guided Vehicle Based on the Recognition of Double Landmarks)

  • 전혜경;홍윤식
    • 한국통신학회논문지
    • /
    • 제37권8C호
    • /
    • pp.721-730
    • /
    • 2012
  • 본 논문에서는 화장장이란 특수한 실내 공간에서 시신을 최종 목적지인 화장로까지 안전하게 운구할 수 있는 무인이송차량(AGV)의 이동 제어 문제를 다루고자 한다. 바닥에 유도라인을 매립하는 방식은 화장장 환경에 적합하지 않기 때문에, 적외선 센서 기반 AGV 이동 궤적 제어 방식을 제안한다. 이 방식은 AGV가 근적외선을 방사하여 미리 부착된 랜드마크(landmark) 판독을 통해 해당 경로를 따라 주행하게 된다. 이러한 방식이 갖는 문제점은 랜드마크 배열 과정에서 사각 지역(dead zone) 및 중첩 지역(overlap zone)이 존재할 수 있다는 점이다. 이를 해결하기 위해 이중 랜드마크 인식을 통해 센싱 과정에서의 오차 발생 과정을 최소화할 것이다. 또한, 화장로에 진입하기 위한 회전 구간에서는 회전 직후 화장로의 진입로와 일직선을 유지하도록 AGV 안쪽 바퀴와 바깥쪽 바퀴의 가속도 제어를 위한 알고리즘을 제안할 것이다. 본 논문에서 제안한 방식은 모의 차량에 적용하여 그 타당성을 검증하였다. 실제 국내 화장장에 본 논문에서 개발한 AGV 시스템을 적용하여 오차 범위 내에서 동작함을 확인하였다.

잡음환경에서의 음성인식을 위한 모델 파라미터 변환 방식에 관한 연구 (A Study on a Model Parameter Compensation Method for Noise-Robust Speech Recognition)

  • 장육현;정용주;박성현;은종관
    • 한국음향학회지
    • /
    • 제16권5호
    • /
    • pp.112-121
    • /
    • 1997
  • 본 논문에서는 잡음에 강한 음성 인식기를 위한 모델 파라미터 변환 방식에 관하여 살펴보았다. 모델 파라미터 변환에 있어서 잡음에 대한 어떠한 통계 모델도 사용하지 않고 각 단어 단위로 수행되어 실시간 음성 인식이 가능하도록 하였다. Parallel model combination(PCM)은 본 논문에서 제안한 방법과의 성능 비교를 위하여 cepstrum 영역에서 구현되었다. 본 논문에서 제안한 PCM 방법은 modified PCM(MPMC)라 하며, 이 방법은 각 hidden Markov mode(HMM)의 state별로 평균적인 가우시안 믹스처(Gaussian mixture)의 변화률과 개별적인 변화률간에 결합지수를 이용하여 평균을 재조정한다. 또한, vector Taylor series 근사화를 이용한 모델 파라미터 변환을 위하여 cepstrum 영역에서의 환경모델 예측을 위한 expectation-maximization(EM) 해를 유도하여 구현하였다. 본 논문에서 구현된 알고리즘들의 성능 위해 HMM 인식기를 이용한 화자독립 고립단어 인식을 수행하였다. 시용된 잡음은 가우시안 백색 잡음과 주행중에 녹음된 자동차 잡음이며, 각 잡음울 signal-to-noise ratio(SNR)별로 사용하였다. 잡음의 모델은 1 state HMM으로 단어시작 3 프레임(frame)을 이용하여 만들어졌다. 인식 결과는 VTS 접근방식을 이용하였을 경우 매우 우수한 인식률을 나타내었으며, MPMC의 경우도 기존의 PMC보다 인식률이 향상되었다. 특히, 영차 VTS의 경우는 단순히 평균만을 조정하였음에도 불구하고 PMC와 MPMC보다 인식률이 우수하게 나타났다.

  • PDF

다중 카메라와 절대 공간 좌표를 활용한 이동 로봇의 강인한 실내 위치 인식 시스템 연구 (Study of Robust Position Recognition System of a Mobile Robot Using Multiple Cameras and Absolute Space Coordinates)

  • 모세현;전영필;박종호;정길도
    • 대한기계학회논문집A
    • /
    • 제41권7호
    • /
    • pp.655-663
    • /
    • 2017
  • ICT 기술의 발달로 로봇의 실내 활용이 증가하고 있다. 현재 이용되거나 향후 이용 범위가 증가할 수 있는 운반, 청소, 안내 로봇 등의 연구가 고도화 될 것이다. 실내 공간에서 이동 로봇 활용을 원활히 하기 위해 자기 위치 인식 문제는 가장 먼저 해결되어야 하는 중요한 연구이다. 추가적으로 이동 로봇의 위치가 인위적으로 이동되거나 예기치 못한 충돌로 인해 기존의 경로에서 이탈하였을 경우 등에서도 이동 로봇이 이런 상황을 인지하고 판단하여 목적지로 정확히 이동할 수 있는 강인한 시스템이 필요하다. 따라서 본 연구에서는 이동 로봇의 자기 위치 관련 여러 문제들을 해결하고자 실내에 설치되어 있는 다수의 CCTV 등 외부 영상 및 이를 절대 공간 좌표 변환한 정보와 더불어 이동 로봇의 엔코더 정보 등을 융합하여 강인한 위치 인식 시스템을 구현하였다. 추가로 이동 로봇 시스템에 경로 주행 알고리즘인 벡터 필드 히스토그램 기법을 적용하였고 실제 실험 수행 후 연구 결과를 확인하였다.

센서 융합에 의한 곡선차선 검출 시스템 설계 (Design of Curve Road Detection System by Convergence of Sensor)

  • 김계희;정선미;문형진;김창근
    • 디지털융복합연구
    • /
    • 제14권8호
    • /
    • pp.253-259
    • /
    • 2016
  • 차선의 인식을 위한 연구는 차량의 자율 주행 또는 교통사고의 예방을 위하여 지속적인 연구가 진행되고 있으며, 최근에는 다양한 알고리즘이 등장하여 차선 인식과 검출은 비약적으로 발전하였다. 이들 연구는 주로 비전 시스템 기반의 연구이며 인식률 또한 상당히 좋아 졌다. 그러나 야간의 도로 또는 우천 시에는 그 인식률이 아직 만족할 수준까지 도달하지는 못하였다. 본 논문은 이러한 비전 시스템 기반의 차선 인식 및 검출의 단점을 개선하여 사고 발생 후 대응을 위한 센서 융합 기술을 적용하여 차선 검출에 대한 연구를 수행하였고, 차선 검출에 대한 연구 중 곡선차선의 검출에 대한 연구를 진행하였다. 도로는 직선도로 뿐만 아니라 다양한 곡선도로까지 검출 가능해야 하며 이는 교통사고 조사 시에 활용될 수 있다. 커브의 굽은 정도를 나타내는 곡률의 임계값을 0.001~0.06로 하여 곡선자선을 산출해 낼 수 있음을 보였다.

어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑 (Vision-based Mobile Robot Localization and Mapping using fisheye Lens)

  • 이종실;민홍기;홍승홍
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.256-262
    • /
    • 2004
  • 로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다. 본 논문에서는 어안렌즈를 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특징을 갖는 고급의 영상 특징을 구하고, 이 특징들을 맵 빌딩과 위치 추정에 이용하였다. 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 이용하여 보정된 영상에서 천정영역과 벽영역으로 분할한다. 최초 맵 빌딩시에는 분할된 영역에 대해 특징점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특징점들을 구하고 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맵에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩 과정과 맵 상에서 로봇의 위치를 찾는데 이용된다. 로봇의 위치에서 구해진 특징점들은 로봇의 실제 위치를 추정하기 위해 기존의 맵과 매칭을 행하고 동시에 기존의 맵 데이터베이스는 갱신된다. 제안한 방법을 적용하면 50㎡의 영역에 대한 맵 빌딩 소요 시간은 2분 이내, 위치 추정시 위치 정확도는 ±13cm, 로봇의 자세에 대한 각도 오차는 ±3도이다.

  • PDF