• Title/Summary/Keyword: 주행거리연장형전기자동차

Search Result 5, Processing Time 0.02 seconds

Communication Method for Torque Control of Commercial Diesel Engine in Range-Extended Electric Trash Truck (주행거리 연장형 청소용 전기자동차에 장착된 상용 디젤엔진의 토크제어를 위한 통신 방안)

  • Park, Young-Kug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.1-8
    • /
    • 2018
  • This paper describes new communication methods for transmitting torque commands between the vehicle controller that determines the amount of power generation in a range-extended electric vehicle and the engine controller that performs it. Generally, vehicles use CAN communication, but in this case, the hardware and software of the existing engine controller must be modified. For this reason, it is not easy to apply CAN communication to small and medium sized automotive reorganize companies. Therefore, this research presents a pin-pin communication method for applying the existing mass produced engine controller to range-extended electric vehicles. The pin-pin communication method converts the driver's demand torque control map inside an mass produced engine controller into a virtual accelerator opening position according to the target speed and target torque of the engine, and converts this to a voltage signal for the existing mass produced engine controller to recognize it. The virtual accelerator opening positions are mounted in the form of a control map in the vehicle controller through the reverse conversion process in an offline environment and are determined by the engine generating power requirements and engine optimal operating point algorithm. These algorithms and signal conversion circuits for engine torque transmission have been mounted on the vehicle controller to conduct the virtual accelerator opening position conversion process according to the engine target torque and to establish the virtual accelerator voltage signal using the signal converter.

Design of Vehicle Control Algorithm and Engine-generator Control for Drivability of Range-extended Electric Vehicle (주행거리 연장형 전기자동차의 차량제어 알고리즘 설계 및 운전성 확보를 위한 엔진 발전시스템 제어)

  • Park, Youngkug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.649-659
    • /
    • 2016
  • This paper describes control algorithm and control structure of vehicle control unit for range-extended electric vehicle equipped with engine-generator system, and specially presents methods which determine optimal operating points and decreases a vibration or a shock for operating the engine-generating system. The vehicle control algorithm is consisted of several parts which are sequence control, calculation of wheel demand torque, determination of operating points, and management of operating points and so vehicle controller has be made possible to efficiently manage calibration parameters. The control algorithm is evaluated by driving test modes, launching performance and operating engine-generator system and so on. In conclusion, this paper present methods for extending a mileage, improving a launching performance and reducing vibration or shock when the engine-generating system is starting or is stopping.

The Component Sizing Process and Performance Analysis of Extended-Range Electric Vehicles (E-REV) Considering Required Vehicle Performance (SUV급 E-REV의 요구 동력 성능을 고려한 동력원 용량선정 및 성능 해석)

  • Lee, Daeheung;Jeong, Jongryeol;Park, Yeongil;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.136-145
    • /
    • 2013
  • It is very important to determine specifications of components included in the drive-train of vehicles at the initial design stage. In this study, component sizing process and performance analysis for Extended-Range Electric Vehicles (E-REV) are discussed based on the foundation of determined system configuration and performance target. This process shows sizing results of an electric driving motor, a final drive gear ratio and a battery capacity for target performance including All Electric Range (AER) limit. For E-REV driving mode, the constant output power of a Gen-set (Engine+Generator) is analyzed in order to sustain State of Charge (SOC) of the battery system.

A Study on Friction Force Reduction of Moving Parts of Engine Generator for Range Extended Electric Vehicle (RE-EV용 엔진 발전기의 구동 부품의 마찰력 저감에 관한 연구)

  • Rha, Wan Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.160-164
    • /
    • 2014
  • Recently, there has been an active study about friction force of moving parts for automotive. This study is development and evaluation of oil pockets for journal bearing and tappet valve for range extended electric vehicle. Specially, oil pockets are effect on friction force depend on pitch, size, depth. In this study, fine oil pocket was formed using by etched texturing on the journal bearing and tappet valve. And oil pocket analyzed by SEM and friction force test was carried out by tensile tester. Finally, in this study, it was suggested by round and plane part which journal besring and tappet valve.

Development of Low-Cost, Double-Speed, High-Precision Operation Control System for Range Extender Engine (레인지 익스텐더 전기자동차 엔진용 저가형 2단속도 고정밀 운전제어시스템 개발)

  • Ham, Yun-Young;Lee, Jeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.529-535
    • /
    • 2018
  • The range extender vehicle runs on a mechanism that allows the small power generation engine to start in the most efficient specific operating range to charge the battery and extend the mileage. In this study, we developed a step motor type intake air supply system that replaces existing throttle body system to develop a simple low cost control logic system. The system was applied to the existing base engine, and in order to improve the performance by increasing the amount of intake air, the effect of changing the length of the intake and exhaust manifold was experimentally examined. As a result, the Type B intake air control actuator operated by one step motor showed higher performance than the Type A in all the operation region, but the performance was lower than that of the base engine due to the increase of flow resistance. To improve this, it was confirmed that the engine performance was improved at both speeds of 2200rpm and 4300rpm when the 140mm adapter was installed in the intake manifold and when the newly designed 70mm exhaust manifold was applied. Through this process, high - precision operation control was realized by connecting the generator load to the optimized engine for the range extender electric vehicle. Experimental results showed that the speed change rate was within ${\pm}2.5%$ at 2200rpm in 1st stage and 4300rpm in 2nd stage and the speed follow-up result of 610 rpm/s was obtained when the speed was increased from 2200rpm to 4300rpm.