• Title/Summary/Keyword: 주파수-파수 스펙트럼

Search Result 46, Processing Time 0.022 seconds

Direction finding based on Radon transform in frequency-wavenumber domain with a sparse array (주파수-파수 스펙트럼과 라돈변환을 이용한 희소 배열 기반 방위추정 기법 연구)

  • Choi, Yong Hwa;Kim, Dong Hyeon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2019
  • When an array receives a signal with a frequency higher than the design frequency, there is an ambiguity in beamforming due to spatial aliasing. In order to overcome this problem, Abadi proposed frequency-difference beamforming. However, there is a constraint that the minimum frequency bandwidth is required according to the value of the difference frequency. In this paper, we propose a method to find the direction of the target signal with spatial aliasing based on the frequency-wavenumber spectrum combined with Radon transform. The proposed method can estimate the direction of the target without ambiguities when the signal has nonnegligible bandwidth. We tested the algorithm by simulating a broadband signal and verified the results with the frequency-difference beamforming method using SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015)'s shrimp noise data.

Detection of HF Narrowband Signal with Unknown Frequency Using DFT Power Spectrum Averaging (DFT 전력스펙트럼 평균화를 기반으로 한 미지의 주파수를 가진 단파대 협대역 신호의 검출)

  • 김명진;김성필;오종갑
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.29-32
    • /
    • 2000
  • 본 논문에서는 미지의 반송파주파수를 가진 협대역 신호의 존재를 광대역에서 검출하는 문제를 고려하였다. DFT 전력 스펙트럼을 평균화하여 주파수 영역에서 Neyman-Pearson criterion을 사용하여 신호를 검출하는 방법을 사용하였다. 평균화된 DFT 스펙트럼의 통계적 특성과 검출 threshold 및 검출 확률을 분석하여 보았다.

  • PDF

Sum-frequency Generation Using a Mode-locked Pulsed Laser and a Continuous-wave Diode Laser (모드 잠금된 펄스 레이저와 연속 발진하는 반도체 레이저를 이용한 합주파수 생성)

  • Kim, Hyunhak;Park, Nam Hun;Yeom, Dong-Il;Cha, Myoungsik;Moon, Han Seb
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.62-67
    • /
    • 2021
  • We have experimentally demonstrated sum-frequency generation (SFG) in a periodically poled lithium niobate (PPLN) crystal, using a mode-locked picosecond-pulsed fiber laser and a continuous-wave (CW) diode laser with a narrow linewidth. The mode-locked fiber laser had a center wavelength of 1560.7 nm and a spectral width of 1.1 nm, and the CW diode laser had a center wavelength of 1551.0 nm and a spectral width of 6 MHz. To effectively realize SFG, both of the spatial modes of the two lasers were made to overlap in the PPLN crystal by using a single-mode optical fiber. The pulse-mode SFG with pulsed- and CW-mode lasers was successfully observed in the spectral and time domains. These results are expected to be applicable in various ways, such as optical frequency measurement and high-resolution laser spectroscopy studies using optical frequency combs.

Characteristics of Wall Pressure over Wall with Permeable Coating (침투성 코팅 처리된 벽면 주위의 벽 압력 특성)

  • Song, Woo-Seog;Shin, Seung-Yeol;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1055-1063
    • /
    • 2012
  • Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open-cell, urethane-type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber-frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low-frequency wall pressure spectral levels compared to a smooth wall.

Proper frequency band as EMG fatigue indices of biceps femoris muscles during treadmill walking (드레트밀 보행시 대퇴이두근의 EMG 근피로지수로서 적당한 주파수 대역)

  • Jongchil Won;Kiyoung Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.141-145
    • /
    • 2024
  • Because of muscle fatigue, motor unit recruitment and firing rates decrease and EMG power spectrum shifts toward lower frequencies as spectral compression which represented by a falling shift in the median frequency. However, changes of this frequency shows relatively less than those of the magnitudes of the low frequency band. This paper aims to examine the moderate ranges of the frequency bands in the existed ones as spectral fatigue indices of biceps femoris muscle. Twelve subjects participate in this experiment, and EMG signals are measured from these muscles during treadmill walking on the speed of 4.5 km/h. ANOVA analysis is used to compare changes of the low and high frequency band with reference to those of median frequency. Experimental results demonstrate that the low frequency band 25-82 Hz and the high frequency band 142-300 Hz could be appropriate for spectral fatigue indices of biceps femoris muscles.

Analysis of Sounds from different Impact Points of Golf Driver (골프 드라이버 임팩트 위치에 따른 소리 분석)

  • Kim, Ho Sung;Jung, Dong Keun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This study was aimed to evaluate the characteristics of impact sound of golf driver according to impact points of its face. In order to get the consistent impact sounds, the apparatus for free golf ball drop was prepared and used. Timed amplitude patterns and maximum spectral peaks of the impact sounds were variant according to the impact points of driver face. As an alternative method of impact sound analysis, cumulative sum of spectral power (cumsum) was used to distinguish between impact sounds according to the impact positions. From the comparison of frequencies representing 20%, 40%, 60%, 80% of cumsum of impact sound, 40% cumsum frequency of the center of driver face was lower than that of the toe and the heel. This finding suggests that the impact sound from the center of driver face has higher spectral power of low frequency component than that of the toe and heel.

Measurement and simulation of high-frequency bistatic sea surface scattering channel in shallow water of Geoje bay (거제 내만해역에서의 고주파 양상태 해수면 음파산란 채널 측정 및 모의)

  • Choi, Kang-Hoon;Kim, Yongbin;Kim, Sea-Moon;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • High-frequency bistatic sea surface scattering channels according to sea state were measured at an experimental site of Geoje bay in April 2020, and compared with predictions based on scattering theory. A linear frequency-modulated signal with a center frequency of 128 kHz and a bandwidth of 32 kHz was used for the acoustic measurements. Sea surface wavenumber spectrum was calculated from surface roughness data measured by a wave buoy, and bistatic scattering cross-section of Small Slope Approximation (SSA) based on the wavenumber spectrum was estimated. In addition, scattering from near-surface bubbles using wind speed measured during experiments was considered. Surface scattering channel intensity impulse responses were simulated using the scattering cross-section and the simulation results were compared and analyzed with the field data.

Frequency-Wave Number Method for the Automated Calculation of the Phase Velocities from the SASW Measurements (SASW실험 분산곡선의 자동화 계산을 위한 주파수-파수 기법)

  • 조성호;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.299-310
    • /
    • 2003
  • In the evaluation of the subgrade stiffness structure by the SASW method, the calculation of the phase velocities is the important task controlling the reliability of the result. The interpretation of the phase spectrum should precede the phase-velocity calculation in the current practice of the SASW method. The difficulty involved in the interpretation prohibited the SASW method from being spread over to the industry. This study proposed a new method called the frequency-wave number technique, which is based on the frequency-wave number relationship of the surface wave in the multi-layered system. The frequency-wave number technique eliminates the expertise in the interpretation of the phase spectrum, automates the phase-velocity calculation and expedites the determination of the phase-velocity dispersion curve. To verify the validity of the proposed frequency-wave number method, the transfer function determined from the numerical simulation of the SASW measurements was used fir the calculation of the automatic calculation of the phase velocities and compared with the phase velocities by WinSASW employing the phase-unwrapping method. Also, the proposed method was applied to the real SASW measurements performed at$\bigcirc$$\bigcirc$area in GyeongGi-Do to see how the proposed method works with the real measurements.

Derivation the Correction of the Component of the Recorder and the Application of Hilbert Transformation to Calculating the Frequency Response of the Sensor (지진기록계 보정과 힐버트 변환 적용에 의한 센서 주파수 응답 계산)

  • Cho, Chang Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.84-90
    • /
    • 2016
  • The validation of performance test for newly developed or old-used sensor is very important in the earthquake monitoring and seismology using earthquake data. Especially the frequency response of the sensor is mainly used to correct the earthquake data. The technique of the calculation of phase and amplitude with Hilbert transformation for earthquake data that is filtered with band limited frequency in time domain is applied to calculate the frequency response of the sensor. This technique was tested for the acceleration sensors, CMG-5T of 1g and 2g installed on the vibration table at the laboratory and we could obtain satisfactory result. Tohoku large earthquake in 2011 observed at the station SNU that has accelerometer, ES-T and seismometer, STS-2 operated by KIGAM was also used to test the field data applicability. We could successfully get the low frequency response of broad band sensor, STS-2. The technique by using band limited frequency filter and Hilbert transformation showed the superior frequency response to the frequency spectrum ratio method for noisy part in data.

Evaluation of High Attenuation Material Using Utrasonic Wave Analysis (초음파의 파형 해석에 의한 고감쇠 재료의 평가)

  • Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.364-370
    • /
    • 1995
  • The purpose of this paper was to develop a nondestructive evaluation method of sintered material by ultrasonic method. The density distribution of sintered material becomes inhomogeneous partially because of the friction between the powder and the die during compaction. The inhomogeneity was investigated by measurement of the energy attenuation coefficient and the shift of the center frequency in the frequency spectrum of the ultrasonic reflection echo. The experimental results showed that the center frequency of reflection wave depended linearly on the density of sintered materials. However, the attenuation coefficient decreased inversely as the density increased. This study shows that the shift of the center frequency in the frequency spectrum of reflection wave can be used to a nondestructive evaluation of sintered materials.

  • PDF