• Title/Summary/Keyword: 주파수 클록

Search Result 122, Processing Time 0.022 seconds

A Design of Full Digital Capacitive Sensing Touch Key Reducing The Effects Due to The Variations of Resistance and Clock Frequency (저항과 클록 주파수 변동에 의한 문제를 감소시킨 풀 디지털 방식 정전용량 센싱 터치키 설계)

  • Seong, Kwong-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.39-46
    • /
    • 2009
  • In this paper, we propose a full digital capacitive sensing touch key reducing the effects due to the variations of resistance and clock frequency. The proposed circuit consists of two capacitive loads to measure and a resistor between the capacitive loads. The method measures the delays of the resistor and two capacitive loads, respectively. The ratio of the two delays is represented as the ratio of the two capacitive loads and is irrelative to the resistance and the clock frequency if quantization error is disregarded. Experimental results show the proposed scheme efficiently reduces the effects due to the variations of clock frequency and resistance. Further more the method has l.04[pF] resolution and can be used as a touch key.

Clock and Date Recovery Circuit Using 1/4-rate Phase Picking Detector (1/4-rate 위상선택방식을 이용한 클록 데이터 복원회로)

  • Jung, Ki-Sang;Kim, Kang-Jik;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.82-86
    • /
    • 2009
  • This work is design of clock and data recovery circuit using system clock. This circuit is composed by PLL(Phase Locked Loop) to make system clock and data recovery circuit. The data recovery circuit using 1/4-rate phase picking Detector helps to reduce clock frequency. It is advantageous for high speed PLL. It can achieve a low jitter operation. The designed CDR(Clock and data recovery) has been designed in a standard $0.18{\mu}m$ 1P6M CMOS technology and an active area $1{\times}1mm^2$.

Performance Analysis of Modulator using Direct Digital Frequency Synthesizer of Initial Clock Accumulating Method (클록 초기치 누적방식의 직접 디지털 주파수 합성기를 이용한 변조기의 성능해석)

  • 최승덕;김경태
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.128-133
    • /
    • 1998
  • This paper is study on performance analysis of modulator using direct digital frequency synthesizer of Initial Clock Accumulating Method. It has been generally used for PLL or digital frequency synthesizing method to be synthesizd randomly chosen frequency state. In order to improve disadvantage of two methods, we constructed modulator system using DDFS of Initial Clock Accumulating Method. We also confirmed the coherence frequency hopping state and possibility of phase control. The results obtained from the experiments are as follows; First, the synthesized output frequency is proportional to the sampling frequency, according to index, K. Second, the difference of the gain between the basic frequency and the harmonic frequencies was more than 50 [dB], that is, this means facts that is reduced the harmonic frequency factor. Third, coherence frequency hopping state is confirmed by PN code sequence. Here, we confirmed the proposed method cut switching time, this verify facts that is the best characteristic of the frequency hopping. We also verified the fact that the phase varies as the adder is operated set or reset.

  • PDF

A 2.496 Gb/s Reference-less Dual Loop Clock and Data Recovery Circuit for MIPI M-PHY (2.496Gb/s MIPI M-PHY를 위한 기준 클록이 없는 이중 루프 클록 데이터 복원 회로)

  • Kim, Yeong-Woong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.899-905
    • /
    • 2017
  • This paper presents a reference-less dual loop clock and data recovery (CDR) circuit that supports a data rate of 2.496 Gb/s for the mobile industry processor interface (MIPI) M-PHY. An adaptive loop bandwidth scheme is used to implement the fast lock time maintaining a low time jitter. To this scheme, the proposed CDR consists of two loops for a frequency locked loop and a phase locked loop. The proposed 2.496 Gb/s reference-less dual loop CDR is designed using a 65 nm CMOS process with 1.2 V supply voltage. The simulated peak-to-peak jitter of output clock is 9.26 ps for the input data of 2.496 Gb/s pseudo-random binary sequence (PRBS) 15. The active area and power consumption of the implemented CDR are $470{\times}400{\mu}m^2$ and 6.49 mW, respectively.

Design and implementation of low-power VLSI system using software control of supply voltages (소프트웨어 전압 제어를 사용한 저전력 VLSI 시스템의 설계 및 구현)

  • Lee, Seong-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.72-83
    • /
    • 2002
  • In this paper, a novel low-power VLSI system architecture was proposed. By exploiting software control of supply voltages, it simplifies hardware implementation, reduces power consumption efficiently, and avoids complicated interface circuits. The proposed architecture models clock frequency-supply voltage relationship by software modelling, enables individual control of supply voltages for all chips in the system, and restricts clock frequency to discrete levels of $f_{CLK}$, $f_{CLK}$2, $f_{CLK}$3... where $f_{CLK}$ is the master clock frequency A prototype system was implemented by modifying off-the-shelf microprocessor evaluation board and adding simple discrete devices such as level shifters and voltage switches. It was measured that the power consumption was reduced from 0.58W to 0.12W in the Prototype system. system.

A 3.125Gb/s/ch Low-Power CMOS Transceiver with an LVDS Driver (LVDS 구동 회로를 이용한 3.125Gb/s/ch 저전력 CMOS 송수신기)

  • Ahn, Hee-Sun;Park, Won-Ki;Lee, Sung-Chul;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.7-13
    • /
    • 2009
  • This paper presents a multi-channel transceiver that achieves a data rate of 3.125Gb/s/ch. The LVDS is used because of its noise immunity and low power consumption. And a pre-emphasis circuit is also proposed to increase the transmitter speed. On the receiver side, a low-power CDR(clock and data recovery) using 1/4-rate clock based on dual-interpolator is proposed. The CDR generates needed additional clocks in each recovery part internally using only inverters. Therefore each part can be supplied with the same number of 1/4-rate clocks from a clock generator as in 1/2-rate clock method. Thus, the reduction of a clock frequency relaxes the speed limitation and lowers power dissipation. The prototype chip is comprised of two channels and was fabricated in a $0.18{\mu}m$ standard CMOS process. The output jitter of transmitter is loops, peak-to-peak(0.31UI) and the measured recovered clock jitter is 47.33ps, peak-to-peak which is equivalent to 3.7% of a clock period. The area of the chip is $3.5mm^2$ and the power consumption is about 119mW/ch.

121.15MHz Frequency Synthesizers using Multi-phase DLL-based Phase Selector and Fractional-N PLL (다중위상 지연고정루프 기반의 위상 선택기와 분수 분주형 위상고정루프를 이용하는 121.15 MHz 주파수 합성기)

  • Lee, Seung-Yong;Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2409-2418
    • /
    • 2013
  • Two frequency synthesizers are proposed to generate a clock for a sub-sampler of an on-chip oscilloscope in this paper. These proposed frequency synthesizers are designed by using a multi-phase delayed-locked loop (DLL)-based phase selector and a fractional-N phase-locked loop (PLL), and they are analyzed by comparing simulation results of each frequency synthesizer. Two proposed frequency synthesizers are designed using a 65-nm CMOS process with a 1V supply and output the clock with the frequency of 121.15 MHz when the frequency of an input clock is 125 MHz. The designed frequency synthesizer using a multi-phase DLL-based phase selector has the area of 0.167 $mm^2$ and the peak-to-peak jitter performance of 2.88 ps when it consumes the power of 4.75 mW. The designed frequency synthesizer using a fractional-N PLL has the area of 0.662 $mm^2$ and the peak-to-peak jitter performance of 7.2 ps when it consumes the power of 1.16 mW.

A 125 MHz CMOS Phase-Locked Loop with 51-phase Output Clock (51-위상 출력 클럭을 가지는 125 MHz CMOS 위상 고정 루프)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.343-345
    • /
    • 2013
  • This paper describes a phase-locked loop (PLL) that generates a 51-phase clock with the operating frequency of 125MHz. To generate 51-phase clock with a frequency of 125 MHz, the proposed PLL uses three voltage controlled oscillators (VCOs) which are connected by resistors. Each VCO consists of 17 delay-cells. An resistor averaging scheme, which makes three VCOs to connect with each other, makes it possible to generates 51-phase clock of the same phase difference. The proposed PLL is designed by using 65 nm CMOS process with a 1.0 V supply. At the operating frequency of 125 MHz, the simulated DNL and peak-to-peak jitter are +0.0016/-0.0020 LSB and 1.07 ps, respectively. The area and power consumption of the implemented PLL are $290{\times}260{\mu}m^2$ and 2.5 mW, respectively.

  • PDF

OpenLDI Receiver Circuit for Flat-Panel Display Systems (평판 디스플레이 시스템을 위한 OpenLDI 수신기 회로)

  • Han, Pyung-Su;Choi, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.34-43
    • /
    • 2008
  • An OpenLDI receiver circuit for flat-panel display systems was designed and fabricated using $1.8-{\mu}m$ high-voltage CMOS technology. Designed circuit roughly consists of DLL circuit and parallelizers, which recovers clock and parallelize data bits, respectably. It has one clock input and four data inputs. Measurement results showed that it successfully recovers clock signal from input whose frequency is $10Mhz{\sim}65Mhz$, which corresponds data rate of $70Mbps{\sim}455Mbps$ per channel, or $280Mbps{\sim}1.82Gbps$ when all of the four data channels were utilized. A commercial LCD monitor was modified into a test-bench and used for video data transmission at clock frequency of 49Mhz. In the experiment, power consumption was 19mW for core block and 82.5mW for output buffer.

A Low EMI Spread Spectrum Clock Generator Using TIE-Limited Frequency Modulation Technique (TIE 제한 주파수 변조 기법을 이용한 낮은 EMI 분산 스펙트럼 클록 발생기)

  • Piao, Taiming;Wee, Jae-Kyung;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.537-543
    • /
    • 2013
  • This paper proposed a low EMI spread spectrum clock generator (SSCG) using discontinuous frequency modulation technique. The proposed SSCG is designed for triangular frequency modulation with high modulation depth. When the maximum time interval error (MTIE) of the SSCG is higher than given limit, the output frequency of SSCG is divided by two and used for reducing the time interval error (TIE). This discontinuous frequency modulation technique can effectively reduce the EMI within given limit. The simulated EMI of proposed SSCG was reduced by 18.5dB than that of conventional methods.