• Title/Summary/Keyword: 주파수 응답특성

Search Result 742, Processing Time 0.034 seconds

Development of a Test Rig with Hydraulic Circuit for the Front Axle Suspension System of an Agricultural Tractor (농용트랙터 전방차축 현가장치를 위한 유압회로 시험기 개발)

  • Lee, Jung-Hwan;Cho, Bong-Jin;Kim, Hak-Jin;Koo, Kang-Mo;Ki, In-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.71-71
    • /
    • 2017
  • 농용트랙터의 운전자는 작업, 주행으로 인한 유해한 저주파 진동에 장시간 노출된다. 이에 따라 운전자에게 전달되는 노면 진동을 감소시켜주기 위한 전방차축 현가장치의 역할이 커지고 있다. 트랙터의 전방차축 현가장치는 주로 유압식으로 설계되어 있으며 이를 구성하는 유압요소 선정이 현가장치의 성능에 중요한 영향을 미친다. 하지만, 실제와 유사한 조건에서 트랙터 차체 무게만큼 큰 부하를 제공하여 유압회로의 성능을 실험하는 것은 비용과 시간 측면에서 비효율적이다. 본 연구에서는 이를 대체하기 위하여 개별 유압요소의 성능을 테스트 할 수 있는 현가장치 유압회로 요인 시험기를 설계제작 하였다. 이를 이용하여 개별 부품의 성능곡선을 센서를 이용 측정하였고 얻은 특성값을, 구성한 유압 시뮬레이션 모델에 반영하여 실제조건의 유압특성을 얻을 수 있는 유효한 시뮬레이션 모델 개발에 활용하였다. 또한, 실험실 환경에서 유압식 현가장치를 간소화 시킨 형태로 유압회로의 성능을 예비시험해 볼 수 있도록 다양한 센서를 장착 데이터를 취득할 수 있도록 하였다. 개발한 요인 시험기는 하부에 설치된 가진 실린더를 이용하여 상부에 설치된 현가장치 실린더의 스트로크 변위와 속도에 따른 힘을 측정할 수 있도록 구성하였다. 이를 위해 현가장치 실린더의 헤드부와 로드부에 각각 압력센서를 설치하였으며 헤드부, 로드부의 압력 차이와 로드셀을 이용해 측정한 가진 실린더의 힘의 관계를 확인하였다. 상부의 현가 실린더 장치는 복동 형태로 제작되어 헤드부, 로드부 양쪽 방향으로 유량이 흐를 수 있도록 설계되었다. 이를 이용해 헤드부와 로드부 사이에 어큐뮬레이터, 가변 오리피스, 릴리프 밸브 등으로 유압회로를 구성하였으며 어큐뮬레이터 용량에 따른 힘의 변화, 가변 오리피스의 개도량에 따라서 전달되는 힘의 크기 등을 측정하였다. 하부의 가진 실린더는 사인파, 삼각파, 계단 입력, DC 레벨 등의 신호를 발생시킬 수 있도록 제작되었다. 신호의 주파수는 0~4Hz, 범위에서 사용자가 조절할 수 있도록 설정되었으며 계단응답 성능 측정 시험을 평가한 결과 정상상태오차는 0.470mm~0.536mm, 입상시간은 0.194초~0.202초, 정착시간은 0.230초~0.421초로 나타났다.

  • PDF

A Comparison Study on Near-surface High-resolution Seismic Data by Different Source and Geophone Types (진원과 수진기별 천부 고해상도 탄성파 자료 비교 연구)

  • Kim, Hyoung-Soo;Keehm, Young-Seuk
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.674-686
    • /
    • 2011
  • Choosing a seismic source and geophone type including a coupling method can be the most important factor in shallow seismic surveys. We studied the characteristics of seismic signals by analyzing 6 different seismic data sets that collected from several sources and geophone conditions. Geophones attached to weight plate (1.8 kg) can be easily and economically installed on the paved road where geophones with spikes would cause the coupling problem. In addition, experiments in this study revealed that a small handy hammer can be used as a seismic source by striking the paved road to generate the seismic signals within 200 ms two-way travel time. Attaching weight plates to geophones may change the geophone response curve which generally depends on the geophone mass, but the change seems not to give significant differences in the first arrival of refracted wave and in the pattern of reflection events. Consequently, using weight plates on paved roads can be an efficient and cost-saving method in the near-surface high-resolution seismic surveys.

Multiple Damage Detection of Pipeline Structures Using Statistical Pattern Recognition of Self-sensed Guided Waves (자가 계측 유도 초음파의 통계적 패턴인식을 이용하는 배관 구조물의 복합 손상 진단 기법)

  • Park, Seung Hee;Kim, Dong Jin;Lee, Chang Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.134-141
    • /
    • 2011
  • There have been increased economic and societal demands to continuously monitor the integrity and long-term deterioration of civil infrastructures to ensure their safety and adequate performance throughout their life span. However, it is very difficult to continuously monitor the structural condition of the pipeline structures because those are placed underground and connected each other complexly, although pipeline structures are core underground infrastructures which transport primary sources. Moreover, damage can occur at several scales from micro-cracking to buckling or loose bolts in the pipeline structures. In this study, guided wave measurement can be achieved with a self-sensing circuit using a piezoelectric active sensor. In this self sensing system, a specific frequency-induced structural wavelet response is obtained from the self-sensed guided wave measurement. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented using the damage indices extracted from the guided wave features. Different types of structural damage artificially inflicted on a pipeline system were investigated to verify the effectiveness of the proposed SHM approach.

Development of Rotordynamics Program Based on the 2D Finite Element Method for Flywheel Energy Storage System (2차원 유한요소법을 적용한 플라이휠 에너지 저장 장치 동특성 해석 프로그램 개발)

  • Gu, Dong-Sik;Bae, Yong-Cae;Lee, Wook-Ryun;Kim, Jae-Gu;Kim, Hyo-Jung;Choi, Byeong-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1757-1763
    • /
    • 2010
  • Flywheel energy storage system (FESS) is defined as a high speed rotating flywheel system that can save surplus electric power. The FESS is proposed as an efficient energy storage system because it can accumulate a large amount of energy when it is operated at a high rotating speed and no mechanical problems are encountered. The FESS consists of a shaft, flywheel, motor/generator, bearings, and case. It is difficult to simulate rotor dynamics using common structure simulation programs because these programs are based on the 3D model and complex input rotating conditions. Therefore, in this paper, a program for the FESS based on the 2D FEM was developed. The 2D FEM can model easier than 3D, and it can present the multi-layer rotor with different material each other. Stiffness changing of the shaft caused by shrink fitting of the hub can be inputted to get clear solving results. The results obtained using the program were compared with those obtained using the common programs to determine any errors.

A Study on the Dental Hygienists' Reactions to Noise When Occurred in Dental Clinic (치과병원에서 발생하는 소음에 대한 치과위생사의 반응)

  • Choi, Mi-Suk;Ji, Dong-Ha
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.453-459
    • /
    • 2009
  • The purposes of this research were to evaluate the relationships of between characteristics of noise and annoyance of dental hygienist by noise in dental clinic. To investigate the dental clinic workers' reactions to noise when occurred in dental clinic, the noise level test in dental clinic and questionnaire were taken. As a result of noise evaluation, It shows that the range of noise level was 67.7~78.3dB(A) and frequency was very high (more than 4KHz). It's seem to be begins occurrence of stamina-loss, contraction of peripheral blood vessel, decrease of adrenocortical hormones. Most of respondents were affected by noise: 67% of respondents were nervous about noise and the rest of respondents were bearable. Analysis by NR-curve showed that it was exceed the noise permit level in working space. As a result of correlation - test, the more exposed dental hygienist to noise, the more felt the unpleasantness and fatigue. It's hard to sufficient explanation to patients about the dental treatment. So it's thoughts that insufficient explanation will negative impact on the patients' satisfaction and increase competitiveness in dental clinics. To remedy a unpleasantness and fatigue of noise in dental hygienist, it's considered that making an offer the ear protection and choosing the low noise-vib. equipment and using the masking effect. Therefore, It can be provide a pleasant working environment with dental hygienist and It will have a great advantage to dental clinics to improve their competitiveness.

  • PDF

Development and Performance Compensation of the Extremely Stable Transceiver System for High Resolution Wideband Active Phased Array Synthetic Aperture Radar (고해상도 능동 위상 배열 영상 레이더를 위한 고안정 송수신 시스템 개발 및 성능 보정 연구)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Jong-Hwan;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.573-582
    • /
    • 2010
  • In this paper, X-band transceiver for high resolution wideband SAR systems is designed and fabricated. Also as a technique for enhancing the performance, error compensation algorithm is presented. The transceiver for SAR system is composed of transmitter, receiver, switch matrix and frequency generator. The receiver especially has 2 channel mono-pulse structure for ground moving target indication. The transceiver is able to provide the deramping signal for high resolution mode and select the receive bandwidth for receiving according to the operation mode. The transceiver had over 300 MHz bandwidth in X-band and 13.3 dBm output power which is appropriate to drive the T/R module. The receiver gain and noise figure was 39 dB and 3.96 dB respectively. The receive dynamic range was 30 dB and amplitude imbalance and phase imbalance of I/Q channel was ${\pm}$0.38 dBm and ${\pm}$3.47 degree respectively. The transceiver meets the required electrical performances through the individual tests. This paper shows the pulse error term depending on SAR performance was analyzed and range IRF was enhanced by applying the compensation technique.

A Study on the Hull Acceleration Analysis of Car Ferry Ship for Securing Safety Evaluation (고박안전성 평가를 위한 카페리선박의 선체가속도 분석에 관한 연구)

  • Yu, Yong Ung;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.587-593
    • /
    • 2020
  • The securing safety of ferry ships on the domestic coast is evaluated by comparing the external force applied and the securing device based on the cargo weight and hull acceleration that can exist at the loaded position. The hull acceleration based on the domestic standard, which is the basis for securing safety evaluation, is applied without reflecting the characteristics of the ship and the sailing conditions. In this study, a total of 12 acceleration measurements were performed at four points of the hull of a ship with a DWT 6,800 ton class 15.5 knots passing through Busan-Jeju to analyze the hull acceleration of the domestic coastal ferry ship. Data were collected for the buoy. For a theoretical comparative analysis of the limited measurement results, the response amplitude operator (RAO) was analyzed through frequency-response analysis by numerical simulation, and acceleration analysis for the four points was performed using the RAO results. Based on the acceleration comparison, differences in the degree of each position were observed, but in the case of the Y-axis acceleration, the analysis was 1.81 m/s2, and the measurement was 1.47 m/s2. The analyzed simulation result was as high as 0.34 m/s2. Moreover, analysis was performed at 22 % level, and measurement at 18 % level.

Evaluation of Fundamental Period of Rockfill Dam Using Blasting Vibration Test (발파진동실험을 이용한 사력댐의 고유주기 산정)

  • Kim, Nam-Ryong;Ha, Ik-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.185-192
    • /
    • 2012
  • The objective of this study is to present and verify a method for evaluating the fundamental period of a rockfill dam using artificially generated vibration from a blasting event. In this study, the artificial blasting vibration tests were carried out at the site adjacent to the existing Seongdeok Dam for the first time in Korea. The artificial vibrations were induced by 4 different types of blasting with the various depths of blasting boreholes and the various explosive charge weight. During the tests, the accelerations time histories were recorded at the crest of the dam. In this acceleration history, only free vibration decay part following the main vibration event was extracted and it was analyzed by frequency domain analysis using Fast Fourier Transform (FFT). From the results of FFT, the fundamental period of the target dam was evaluated. It is found that the effect of different blasting types on the fundamental period of the target dam is negligible and the fundamental period of the target dam can be consistently obtained by blasting vibration tests. Furthermore, it is found that the period of the target dam calculated by the method using blasting vibration test is similar to that obtained by the method of previous researchers using the real earthquake records. Therefore, in case that the earthquake record is not available, the fundamental period of a rockfill dam can be reasonably evaluated if blasting vibration test is allowed at the site adjacent to the dam.

A Planar Implementation of a Negative Group Delay Circuit (평면 구조의 마이너스 군지연 회로 설계)

  • Jeong, Yong-Chae;Choi, Heung-Jae;Chaudhary, Girdhari;Kim, Chul-Dong;Lim, Jong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.236-244
    • /
    • 2010
  • In this paper, a planar structure negative group delay circuit(NGDC) is proposed to overcome the limited availability of the component values required for the prototype lumped element(LE) NGDC design. From the prototype LE circuit analysis, general design equations and the conditions to obtain the NGD are derived and illustrated. Then the LE circuit is converted into the planar structure by applying the transmission line resonator(TLR) theory. As a design example, the LE NGDC and the proposed planar structure NGDC are designed and compared. To estimate the commercial applicability, 2-stage reflection type planar NGDC with -5.6 ns of total group delay, -0.2 dB of insertion loss, and 30 MHz of bandwidth together with 0.1 dB and 0.5 ns of the magnitude and group delay flatness, respectively, for Wideband Code Division Multiple Access(WCDMA) downlink band is fabricated and demonstrated. Also, to show the applicability of the proposed NGDC, we have configured a simple signal cancellation loop and obtained good loop suppression performance.

Study on the Emergency Assessment about Seismic Safety of Cable-supported Bridges using the Comparison of Displacement due to Earthquake with Disaster Management Criteria (변위 비교를 통한 케이블지지교량의 긴급 지진 안전성 평가 방법의 고찰)

  • Park, Sung-Woo;Lee, Seung Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.114-122
    • /
    • 2018
  • This study presents the emergency assessment method about seismic safety of cable-supported bridges using seismic acceleration sensors installed on the primary structural elements of them. The structural models of bridges are updated iteratively to make their dynamic characteristics to be similar to those of real bridges based on the comparison of their natural frequencies with those of real bridges estimated from acceleration data measured at ordinary times by the seismic acceleration sensor. The displacement at the location of each seismic acceleration sensor is derived by seismic analysis using design earthquake, and the peak value of them is determined as the disaster management criteria in advance. The displacement time history is calculated by the double integration of the acceleration time history which is recorded at each seismic acceleration sensor and filtered by high cut(low pass) and low cut(high pass) filters. Finally, the seismic safety is evaluated by the comparison of the peak value in calculated displacement time history with the disaster management criteria determined in advance. The applicability of proposed methodology is verified by performing the seismic safety assessment of 12 cable-supported bridges using the acceleration data recorded during Gyeongju earthquake.