• Title/Summary/Keyword: 주파수영역해석법

Search Result 246, Processing Time 0.019 seconds

An analysis of crosstalk in hihg-speed packaging interconnects using the finite difference time domain method (시간 영역 유한 차분법을 이용한 고속 패키지 접속 선로의 누화 해석)

  • 남상식;장상건;진연강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1975-1984
    • /
    • 1997
  • In this paper, we analyzed the frequency characteristics and the crosstalk of the adjacent parallel lines and the crossed lines in high-speed packaging interconnections by using the three-dimensional finite difference time domain (3D FDTD) method. To analyze the actual crosstalk phenomena in the transmission of the high-speed digital sgnal, the step pulse with fast rise time was used for the source excitation signal instead of using the Gaussian pulse that is generally used in FDTD. To veify the theoretical resutls, the experimental interconnection lines that were fabricated on the Duroid substrate($\varepsilon_{r}$=2.33, h=0.787 [mm]) were tested by TDR(time domain reflectometry). The results show good agreement between the analyzed results and the tested outcomes.

  • PDF

Numerical Analyses and Wind Tunnel Tests of a Propeller for the MAV Propulsion (초소형 무인기 추진용 프로펠러의 전산해석 및 풍동시험)

  • Cho, Lee-Sang;Lee, Sea-Wook;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.955-965
    • /
    • 2010
  • The MH-75 propeller for the MAV propulsion is designed using a free vortex design method which considers design parameters such as the hub-tip ratio, the twist angle distribution, the maximum camber location and the chord length of the propeller blade. Aerodynamic characteristics of the MH-75 propeller are predicted by changing the flight speed using the frequency domain panel method. And, the thrust characteristics of the MH-75 propeller are measured using the balance system of the subsonic wind tunnel for the validation of numerical results. The performance characteristics of the MH-75 propeller satisfied with design requirements. Numerical results of the MH-75, which are predicted by the frequency domain panel method, are more agree with experimental results compare with XFOIL.

Spectral Domain Analysis of Resonant Frequency in Rectangular Microstrip Patch Antenna on Uniaxial Substrates with Airgap and Superstrate (공기 갭과 덮개층을 갖는 이방성 매질 위의 사각 마이크로스트립 패치 안테나 공진 주파수의 파수 영역 해석)

  • Lee, Sang-Mok;Yoon, Joong-Han;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.91-99
    • /
    • 2001
  • Spectral domain of resonant frequency rectangular microstrip patch antenna on anisotropic substrates and superstrate with airgap are analyzed. First, we derive dyadic Green function for selected anisotropic material by constitutive relation and then formulate integral equations of electric fields using Fourier transform in space region. Using Galerkin's moment method, we discretize the electric field integral equations Into the matrix form and select sinusoidal functions as basis functions. We verify the validity of numerical results and compare the results with existing ones in showing a good agreement between them. The resonant frequencies in the variation of air gap, patch length and permittivity of superstrate anisotrpy ratio of anisotrpic superstrate are presented and analyzed.

  • PDF

Unsteady Aerodynimic Analysis of an Aircraft Using a Frequency Domain 3-D Panel Method (주파수영역 3차원 패널법을 이용한 항공기의 비정상 공력해석)

  • 김창희;조진수;염찬홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1808-1817
    • /
    • 1994
  • Unsteady aerodynamic analysis of an aircraft is done using a frequency domian 3-D panel method. The method is based on an unsteady linear compressible lifting surface theory. The lifting surface is placed in a flight patch, and angle of attack and camber effects are implemented in upwash. Fuselage effects are not considered. The unsteady solutions of the code are validated by comparing with the solutions of a hybrid doublet lattice-doublet point method and a doublet point method for various wing configurations at subsonic and supersonic flow conditions. The calculated results of dynamic stability derivatives for aircraft are shown without comparision due to lack of available measured data or calculated results.

Analysis of Symmetric and Asymmetric Multiple Coupled Line on the Multi-layer Substrate (다층 기판위의 대칭 및 비대칭의 다중 결합선로에 대한 해석)

  • Kim, Yoonsuk;Kim, Minsu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.16-22
    • /
    • 2013
  • A general characterization procedure based on the extraction of a 2n-port admittance matrix corresponding to n uniform coupled lines on the multi-layered substrate using the Finite-Difference Time-Domain (FDTD) technique is presented. In this paper, the frequency-dependent normal mode parameters are obtained from the 2n-port admittance matrix to analyze multi-layered asymmetric coupled line structure, which in turn provides the frequency-dependent propagation constant, effective dielectric constant, and line-mode characteristic impedances. To illustrate the technique, several practical coupled line structures on multi-layered substrate have been simulated. Especially, embedded conductor structures have been simulated. Comparisons with Spectral Domain Method are given, and their results agree well. It is shown that the FDTD based time domain characterization procedure is an excellent broadband simulation tool for the design of multiconductor coupled lines on multilayered PCBs as well as thick or thin hybrid structures.

Dynamic Response Analysis of Tension Leg Platforms in Multi-directional Irregular Waves (Frequency Domain Analysis) (다방향 불규칙파중의 TLP의 동적응답해석 (주파수영역 해석))

  • 구자삼;조효제;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.23-32
    • /
    • 1994
  • A numerical procedure is described for simultaneously predicting the motion and structural responses of tension leg platforms (TLPs) in multi-directional irregular waves. The developed numerical approach is based on a combination of a three dimensional source distribution method, the finite element method for structurally treating the space frame elements and a spectral analysis technique of directional waves. The spectral description for the linear responses of a structure in the frequency domain is sufficient to completely define the responses. This is because both the wave inputs and the responses are stationary Gaussian ran dom process of which the statistical properties in the amplitude domain are well known. The hydrodynamic interactions among TLP members, such as columns and pontoons, are included in the motion and structural analysis. The effect of wave directionality has been pointed out on the first order motion, tether forces and structural responses of a TLP in multi-directional irregular waves.

  • PDF

The Analysis of Arbitrarily Shaped Microstrip Patch Antennas using the MPIE (MPIE를 이용한 임의의 형상을 갖는 마이크로스트립 패치 안테나의 해석)

  • 정대호;김태원;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1059-1068
    • /
    • 1993
  • We will put the emphasis on the analysis of arbitrarily shaped microstrip antennas. The most general and rigorous treatment of microstrip antennas is given by the electric field integral equation(EFIE), usally formulated in the spectral domain. In this paper, we use a modification of EFIE, called the mixed potential integral equation(MPIE) , and we solve it in the space domain. This technique uses Green's functions associated with the scalar and vector potential which are calculated by using stratified media theory and are expressed as Sommerfeld integrals. The integral equation is solved by a moment's method using rooftop subsectional basis function. Thus, microstrip patches of any shape can be analysed at any frequency and for any substrate. Numerical results for a rectangular patch and for a L-shaped patch are given and compared with measured values.

  • PDF

Analysis on Driving Performance of Linear Induction Motor for Maglev System by Finite Element Method (유한요소법을 이용한 자기부상용 선형유도기의 운전 특성 분석법)

  • Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4469-4474
    • /
    • 2014
  • This paper proposes a novel analysis method on the driving performance of LIM (linear induction motor) by FEM (finite element method). First, a linear model was converted with a rotation model to perform the dynamic analysis for a long time. Through the FEM model, the slip parameter for the control algorithm could be induced effectively. The LIM for the traction system was performed at a constant V/f in the region of constant torque, and a constant V and variable f in the region of constant power. Several slip characteristic curves according to the voltage and frequency were calculated by FEM in advance. The driving performance was then induced by interpolating the slip characteristic curves according to the load of the vehicle.

A Study on the Improvement of FEM model in Plate Vibration by Modification of Young's Modulus and Shape (FEM 모델의 형상과 감쇠계수의 추정을 통한 평판진동해석의 개선에 대한 연구)

  • Park, Sok-Chu;Oh, Chang-Guen
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.794-801
    • /
    • 2012
  • Finite Element Method is a strong tool to analyse static and dynamic problem of a structure. FEM is a good method for static problem, but for dynamic problem there are some differences between real phenomena and analyzed phenomena. Therefore some modifications are needed to identify two results. In this paper authors propose a genetic algorithm method 1) to adjust dimensions of plate for identifying natural frequencies, 2) to fit amplitude of FEM Frequency Response Function(FRF) onto it of real FRF. Analysis by raw FEM data gave questions if the results were for the same object. By only adjusting Young's modulus much better accordances were obtained, but limitation existed still. Very good agreements were achieved by shape modification and damping coefficient identification.

Design of the Electromagnetically Coupled Broadband Microstrip Antennas with Radial Tuning Stub (방사형 동조 스터브를 갖는 전자기결합 광대역 마이크로스트립 안테나의 설계)

  • 김정렬;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.26-35
    • /
    • 1996
  • In this paper, characteristics of the electromagnetically coupled broadband microstrip antennas are analyzed by the Finite Difference Time Domain (FDTD) method, and antenna para- meters are optimized to get maximum bnadwidth. By using short radial tuning stub in microstrip feedline, electromagnetically coupled microstrip antenna shows broadband ($\simeq$13%) characteristics, and the characteristics are varied as a function of radius, radial angle, and position of the radial tuning stub. Operating frequency, return loss, VSWR and input impedance are calculated by Fourier transforming the time domain results. After optimization of the parameters, maximum bandwidth of the radial stub tuning microstrip antenna is about 15% and the ripple char- acteristic of the VSWR is better than the rectangular tuning stub microstrip antenna.

  • PDF