• Title/Summary/Keyword: 주파수성형 슬라이딩모드제어기

Search Result 2, Processing Time 0.021 seconds

Performance Evaluation on an Active Hybrid Mount System for Naval Ships Using Piezostack Actuator (압전작동기를 이용한 함정용 능동 하이브리드 마운트 시스템의 진동제어 성능평가)

  • Quoc, Nguyen Vien;Choi, Seung-Boh;Oh, Jong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.77-82
    • /
    • 2010
  • In this work, a new active hybrid mount featuring piezostack actuator and rubber element is proposed, and its vibration control performance is evaluated by applying a robust frequency-shaped sliding mode controller. After describing the configuration of the proposed mount, vibration control performances are experimentally evaluated. A mount system with four active hybrid mounts is then constructed. To attenuate vibrations on the supported mass, a frequency-shaped sliding mode controller is designed and implemented to the system. Finally, control performances are obtained and presented in time and frequency domains via computer simulation.

  • PDF

Performance Evaluation on an Active Hybrid Mount System for Naval Ships Using Piezostack Actuator (압전작동기를 이용한 함정용 능동 하이브리드 마운트 시스템의 진동제어 성능 평가)

  • Quoc, Nguyen Vien;Choi, Seung-Boh;Oh, Jong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • In this work, a new active hybrid mount featuring piezostack actuator and rubber element is proposed, and its vibration control performance is evaluated by applying a robust frequency-shaped sliding mode controller. After describing the configuration of the proposed mount, vibration control performances are experimentally evaluated. A mount system with four active hybrid mounts is then constructed. To attenuate vibrations on the supported mass, a frequency-shaped sliding mode controller is designed and implemented to the system. Finally, control performances are obtained and presented in time and frequency domains via computer simulation.