• Title/Summary/Keyword: 주축 변위

Search Result 36, Processing Time 0.02 seconds

CUTTING FORCE PREDICTION USING SPINDLE DISPLACEMENT IN MILLING (밀링가공에서의 주축 변위 측정을 통한 절삭력 예측)

  • 장훈근;장동영;한동철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.485-489
    • /
    • 2004
  • Cutting force is important to understand cutting process in milling. To measure cutting force, tool dynamometer is widely used but it is hard to apply in workshop condition. Cutting force measurement which doesn't affect cutting process is needed. Using relations between cutting force and spindle displacement, cutting force can be predicted. Cylindrical capacitive sensor was used to measure spindle displacement during cutting. And signals from tool dynamometer collected to compare with spindle displacement. The result shows spindle displacement has a linear relation with cutting force. Using this result, a simple method to predict cutting force could be applied at workshop condition.

  • PDF

Monitoring of Eccentric Machining Error and Cutting Force Variation using Cylindrical Capacity Spindle Sensor on CNC Turning (CNC선삭시 주축변위센서를 이용한 편심 가공오차와 절삭력 변화특성의 검출)

  • Maeng Heeyoung;Kim Sungdong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.300-306
    • /
    • 2005
  • This paper presents the methodology for measuring eccentricity of the machined cylindrical part using CCS(cylindrical capacitance spindle sensor) signal in the CNC turning process. We use capacitance type sensor to take full advantage of averaging effect by using large capacitance area to encompass the whole side of a sensor. The intentionally proposed initial eccentricity is applied to the experimental testpieces, and their resultant relationships between CCS orbits and eccentricities are investigated. As a result, the possibility as a automatic detection apparatus for the CNC lathe is considered based on the linearities of CCS signal and magnitude of eccentricity of machined cylindrical surfaces.

  • PDF

A Study on the Helicopter Composite Blade Impact Loads (헬리콥터 복합재 블레이드 충돌하중 연구)

  • Lee, Hyun-Cheol;Jeon, Boo-Il;Moon, Jang-Soo;Yee, Seok-June
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.181-186
    • /
    • 2009
  • The objective of this study is ensuring safety of cabin when the blade impacts into a obstacle by verifying safety of the rotor mast and the transmission using impact loads calculated from the simulation. The rotor mast shall not fail and the transmission shall not be displaced into occupiable space when the main rotor composite blade impact into a 8 inch rigid cylinder in diameter on the outer 10% of the blade at operational rotor speed. To calculate the reaction loads at the spherical bearing and lead-lag damper, blade impact analysis was performed with FE model consist of composite blade, tree(or rigid cylinder) using elastic-plastic with damage material and several contact surfaces which were created to describe a progress of actual failure. Also, the reaction loads were investigated in change of blade rotation speed and pitch angle.

Effect on the Compliance of Spindle -Bearing System by the Assembling Tolerance (축-베어링계의 컴플라이언스 특성에 미치는 조립공차의 영향)

  • 이강재;서장력;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.995-999
    • /
    • 1995
  • In spindle-bearing system, the displacement characteristics of the bearing by the load applied on the spindle are affected greatly by the assembling tolerance between the spindle and housing assembled to support the bearing. Also in spindle system of rotational operation, the compliance characteristic of the bearing is expected to be varied frequently by the thermal deformation of the spindle and the housing. To predict the thermal deformation of the spindle including heat generation of the bearing, we need to examine the effect on the compliance of spindle-bearing system by the assembling tolerance. In this paper, we proposed the load-displacement relation expression considering the effect which the variation of contact pressure due to the radial directional assembling tolerance between the bearing and the housing influences on the axial and radial directional displacement characteristics of the bearing. Furthermore, for several assembling systems of bearings and housings having all different assembling tolerances, we proposed a method to predict exactly the variation of the bearing preload which is sensitive to the thermal deformation by showing the propriety with experimental results.

  • PDF

A Study on the Development of Hydrostatic High Speed Spindle for Grinding Machine (고속 연삭기용 유정압 스핀들 개발에 관한 연구)

  • Kim, Jeong-Suk;Cho, Yong-Kwon;Park, Jin-Hyo;Moon, Hong-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.96-100
    • /
    • 2011
  • The hydrostatic bearings have a relatively small run-out comparing to its shape error by fluid film effect in hydrostatic state as like pneumatic bearing and have a high stiffness, load capacity and damping characteristics. As there is no maintenance and semipermanent in these bearing type, it has been usually adopted as main spindle bearing for grinding machine. In this thesis, to develop hydrostatic bearing for high speed spindle, the cooler setting temperature, bearing clearance and nozzle pressure of belt-driven hydrostatic bearing are investigated. The bearing temperature is decreased, as the cooler setting temperature is lower, nozzle pressure is higher and bearing clearance is wider. The front temperature of bearing is nearly $8^{\circ}C$ higher than the rear one up to 13,000 rpm of spindle revolution. The thermal deflection of X-axis is ${\pm}16\;{\mu}m$ in range of 12,000 rpm-13,000 rpm. Therefore, it is conformed that the built-in motor hydrostatic bearing can be used to high speed spindle.

Development of Simulnation Program of Screw Driving Weft Insertion Mechanism for Rapier Loom (래피어 직기용 스크류 구동 위입기구의 시뮬레이션 프로그램 개발)

  • Kim, Jong-Su;Seong, Baek-Ju
    • 연구논문집
    • /
    • s.30
    • /
    • pp.101-110
    • /
    • 2000
  • Weft insertion mechanism is for completing the structure of yarn and weft yarn and its driving method is screw type. In the high speed rapier loom, weft yarn is thrown by insert rapier and carrier rapier into the shed which make divide two parts of upper part ant lower part for warp yarn. It is possible for this mechannism to reduce the size of rapier and wheel, and directly connected to the main shaft without gear belt. Therefore, exact rapier motion through realization of arbitrary acceleration diagram requested rapier and optimal design for high speedization and operating rate increasing are necessary. In this study, with a view to exact system analysis for understanding of overall trace and high speedization of rapier loom through computer simulation. we report not only deduction of displacement, velocity, and acceleration components of rapier for analysis theory establishment, of weft insertion mechanism and exact motion induction according to screw rotation, but also development of simulation program for realization these on the monitor.

  • PDF