• Title/Summary/Keyword: 주차 브레이크

Search Result 24, Processing Time 0.011 seconds

Test Analysis of a Parking Brake for the Track Drive Unit of an Excavator (굴삭기 주행모터용 주차브레이크의 시험분석)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1157-1162
    • /
    • 2011
  • The parking brake is an essential unit embedded in the track-driving motor of an excavator. The parking brake plays an important role in keeping the excavator in place not only when it is parked, but also during the digging operation. In fact, the load placed on the parking brake during the digging operation is significantly higher than the parking load, because the impact and rating loads caused by the bucket digging force cycle frequently and have very high load ranges. Therefore, the load conditions during the digging operation should be taken into account in the parking brake certification test. In this study, a series of experiments was carried out in which various operating pressures were applied to the parking brake, where repeated loads were reciprocally placed on the brake by locking the multifriction disc and releasing the hydraulic cylinder. The characteristics of the parking brake were investigated by comparing the obtained experimental results and the theoretical design specifications.

A Study on the Implementation of Automatic parking brake system using In-Vehicle network (차량 네트워크를 이용한 자동 주차브레이크 시스템 구현)

  • 문용선;문창현;이명복;정철호;최형윤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.733-739
    • /
    • 2004
  • As per the recent technology related to safety of vehicles, Active safety system is being developed in combination withthe technology of electronic system. For example, ABC(Active Body Control), ABS(Antilock Brake System), ACC(Adaptive Cruise Control) are representative of this system. This technology is based on an electronic system, and shares a lot of data through network-system invehicles. Therefore, the control-algorism and the practicable application are realized in this research in order that CAN, network system for vehicles can run the brake device, which is composed mechanically and hand-operated. Additionally the possibility is confirmed that this control-system can be compatible with the existing electronic system in vehicles.

Performance Analysis of Electronic Parking Brake (전자 제어식 주차브레이크(EPB)의 성능분석)

  • Kim, Sung-Mo;Jeong, Jong-Yeol;Shin, Chang-Woo;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.751-755
    • /
    • 2011
  • Electric Parking Brake(EPB) is the system operated by electric control actuator. It differs from the mechanical parking brake system which is operated by lever and pedal in need of human power. The EPB system is composed of DC motor, helical and differential epicyclic gear, screw, cables, and sensor. This paper describes about the EPB system mathematically and constructs a modeling of the EPB system using MATLAB/SIMULINK. Especially, SimMechanics library in SIMULINK is used to make each parts of system a module. By made modeling of the friction torque between bolt and nut. Cable tension can be maintained after the motor operating stops.

Design of Electronic Parking Brake Control Simulator for Emergency Vehicle Braking (차량 비상제동을 위한 전자식 주차 브레이크 제어 시뮬레이터 설계)

  • Park, Jaeeun;Im, Changhyon;Kim, Taesung;Kim, Youngkeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In this paper, a simulator hardware and control design for an electronic parking brake (EPB) are proposed for emergency vehicle braking when the hydraulic break and anti-lock brake systems (ABS) fail to function. EPB systems are designed specifically for park braking and are usually installed on the rear wheels. However, in an emergency situation when all vehicle brake systems fail, the EPB can be utilized to stop the vehicle and track the target slip ratio as the ABS. This paper analyzed the non-linear EBP of the type of motor on caliper (MoC) based on experiments. A simulator hardware is also designed to validate the performance of the designed EPB controller in terms of braking distance and performance in tracking the target slip ratio. Through the experimental analysis, it is confirmed that a sliding mode controller can be applied on a non-linear EPB to track the target slip ratio.

Controller Design for Electric Parking Brake(EPB) System (전자제어식 주차 브레이크(EPB) 시스템의 제어기 설계)

  • Lee, Doo-Ho;Lee, Choong-Woo;Chung, Han-Byul;Chung, Chung-Choo;Son, Young-Seop;Yoon, Pal-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1842-1845
    • /
    • 2006
  • 본 논문에서는 차량용 전자제어식 주차 브레이크(Electric Parking Brake, EPB) 시스템 제어에 효과적인 제어기를 논의한다. 이를 위하여 EPB 시스템의 동작 요건과 고유 특성을 고려하여 제어 사양을 정하고 이를 만족시키는 세 가지 제어기(Bang-bang, 선형 P, 비선형 P 제어기)를 제안한다. 또한 제안된 제어기들의 특성 및 성능을 과도응답과 강인성 측면에서 분석하였다. 이를 위해 EPB 시스템을 주파수 영역과 시간 영역에서 모델링하고, 설계된 제어기들의 성능을 모의실험을 통해 비교, 검증한다.

  • PDF

Improved transient performance of mechanical parking facilities through simultaneous PLC and inverter control (PLC와 인버터의 동시 제어를 통한 기계식 주차설비의 과도 상태 성능 향상)

  • Kim, Chang-Young;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.116-127
    • /
    • 2021
  • In this paper, we propose simultaneous control which improve in transient state performance of mechanical parking facilities through simultaneous control of PLC and inverter. In conventional mechanical parking facilities, it is controlled only by PLC, and it is more likely to generate over-currents in induction motors, and the ride comfort is reduced due to wear and damage caused by friction on the brake pads, and the life is shortened. To improve this problems the application of control techniques through simultaneous control of PLC and inverter prevents over-currents in induction motors, protects brake pads, improves ride comfort, increases control and ensures safety. We verify its validity by applying the proposed control method via simultaneous control of PLC and inverter to a mechanical parking facility.

Development of Advanced Driver Support System by Voice (음성을 이용한 차세대 운전자 지원 시스템 개발)

  • 최형기;문인섭;김종교
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.8
    • /
    • pp.98-102
    • /
    • 1998
  • 본 연구는 인간에게 있어서 정보의 습득으로 가장 쉬운 음성을 이용하여 자동차의 정보를 전달하는 운전자의 지원 시스템의 구현에 관한 내용으로, 제작된 시스템은 여러 가 지 입력 신호(연료량, 엔진 냉각수 온도, 오일 압력, 자동차 속도, 엔진 속도, 문 열림 경고, 안전 벨트 경고, 주차 브레이크 등)에 따라 음성 경고 문장을 발생하게 된다.

  • PDF