• Title/Summary/Keyword: 주제어 자동분류

Search Result 18, Processing Time 0.023 seconds

The Design of Index System for Encyclopedia Database (백과사전 데이타베이스를 위한 색인시스템 설계)

  • 추윤미;최석두
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1994.12a
    • /
    • pp.37-40
    • /
    • 1994
  • 백과사전 데이타베이스의 효과적인 검색을 위한 색인시스템을 설계하였다. 여기에서는 항목에 대한 각종 속성정보와 본문정보를 모두 포함한 색인표제어파일을 작성하고, 각 항목에 대한 참조항목을 별도로 두지 않고 시소러스파일의 BT, NT, RT, UF를 사용하여 그 항목과 연관된 항목을 참조하도록 한다. 시소러스파일은 각 색인표제어에 부여한 주제분류기호(DDC, 또는 KDC)의 계층구조를 이용하여 자동생성한 후 색인자의 수작업을 거쳐 작성된다. 이 색인시스템을 통해 백과사전에 포함되어 있는 모든 정보를 이용한 다양한 접근이 가능하며 시소러스를 사용하여 관련항목을 브라우징을 할 수 있어 포괄적인 검색이 가능하다.

  • PDF

The Automatic Management of Classification Scheme with Interoperability on Heterogeneous Data (이기종 데이터 간 상호운용적 분류체계 관리를 위한 분류체계 자동화 방안)

  • Lee, Won-Goo;Hwang, Myung-Gwon;Lee, Min-Ho;Shin, Sung-Ho;Kim, Kwang-Young;Yoon, Hwa-Mook;Sung, Won-Kyung;Jeon, Do-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2609-2618
    • /
    • 2011
  • Under the knowledge-based economy in 21C, the convergence and complexity in science and technology are being more active. Interoperability between heterogeneous domains is a very important point considered in the field of scholarly information service as well information standardization. Thus we suggest the systematic solution method to flexibly extend classification scheme in order for content management and service organizations. Especially, This paper shows that automatic method for interoperability between heterogeneous scholarly classification code structures will be effective in enhancing the information service system.

Test on Learning Method for Improving Performance Using Cohesion Devices (Cohesion Devices를 이용한 학습 적용 방법과 성능 개선을 위한 실험)

  • Kim, Yonghoon;Chung, Mokdong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.755-758
    • /
    • 2018
  • 현재의 정보 검색 및 문서를 분류하는 기법에 대하여 신경망을 이용한 정보검색 모델에 대한 연구가 활발히 진행되고 있으며, 간단한 문장에 대한 주제어 분석에서부터 장문에 해당하는 수필 등의 문서를 분류하는 기술이 요구되고 있으며, 이를 실현하기 위한 다양한 알고리즘을 적용하거나, 단어 및 문서에 가중치를 적용하거나, 문서에서의 특이 값을 구하고, 이를 분석하는 방법에 대하여 정보화가 가속화 되면서 정확한 문서에 대한 이해가 요구되고 있다. 이러한 연구와 직접적으로 관련된 단어의 빈도에 대한 논의는 사회과학의 영어학습에 대한 연구 또는 순수 언어에 대한 연구에 머물러 있다. 이에 본 연구에서는 영문에서의 응집장치를 이용하여 문장에서의 중요 단어에 대한 빈도를 합리적으로 증가시켜 문장의 의미를 더 정확하게 분석할 수 있는 기법에 대하여 제시하고자 하며, 본 논문에서는 영문 수필 사이트의 분류를 추측하고 이를 자동 분류 할 수 있는 방법에 대하여 제시하고자 하며, 이를 구현하여 문서의 의미에 대한 연구에 기여하고자 한다.

A Web Page Categorization Model Based on Document Structural Information (문서 구조 정보에 기반한 웹 페이지 범주화 모델)

  • Jung, Sung-Hwa;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.91-96
    • /
    • 1998
  • 본 논문에서는 주제범주 체계를 이용한 웹 검색이 가지는 장점을 이용 할 수 있도록 인터넷 웹 페이지들을 주제범주 체계에 따라 자동으로 분류하는 모델을 제시한다. 특히 웹 페이지 작성자들의 의도를 범주화에 반영할 수 있는 방법으로 HTML 태그를 이용한다. 즉 웹 페이지의 표현에 있어서 벡터 스페이스 모델에서의 색인어 빈도 가중치에 태그 가중치를 추가 하여 보다 좋은 성능을 얻도록 하였다. 그리고 주제범주를 표현하는데 사용되는 자질의 선정에는 기대상호정보, 상호정보 척도를, 문서간 유사도 비교에는 최근린법을 사용하였다. 전북대에서 정보탐정용으로 분류한 웹 페이지를 대상으로 실험하였으며, 기본 모델 대비 약 7%의 정확도 향상을 얻을 수 있었다.

  • PDF

An AutoEncoder Model based on Attention and Inverse Document Frequency for Classification of Creativity in Essay (에세이의 창의성 분류를 위한 어텐션과 역문서 빈도 기반의 자기부호화기 모델)

  • Se-Jin Jeong;Deok-gi Kim;Byung-Won On
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.624-629
    • /
    • 2022
  • 에세이의 창의성을 자동으로 분류하는 기존의 주요 연구는 말뭉치에서 빈번하게 등장하지 않는 단어에 초점을 맞추어 기계학습을 수행한다. 그러나 이러한 연구는 에세이의 주제와 상관없이 단순히 참신한 단어가 많아 창의적으로 분류되는 문제점이 발생한다. 본 논문에서는 어텐션(Attention)과 역문서 빈도(Inverse Document Frequency; IDF)를 이용하여 에세이 내용 전달에 있어 중요하면서 참신한 단어에 높은 가중치를 두는 문맥 벡터를 구하고, 자기부호화기(AutoEncoder) 모델을 사용하여 문맥 벡터들로부터 창의적인 에세이와 창의적이지 않은 에세이의 특징 벡터를 추출한다. 그리고 시험 단계에서 새로운 에세이의 특징 벡터와 비교하여 그 에세이가 창의적인지 아닌지 분류하는 딥러닝 모델을 제안한다. 실험 결과에 따르면 제안 방안은 기존 방안에 비해 높은 정확도를 보인다. 구체적으로 제안 방안의 평균 정확도는 92%였고 기존의 주요 방안보다 9%의 정확도 향상을 보였다.

  • PDF

A Experimental Study on the Development of a Book Recommendation System Using Automatic Classification, Based on the Personality Type (자동분류기반 성격 유형별 도서추천시스템 개발을 위한 실험적 연구)

  • Cho, Hyun-Yang
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.2
    • /
    • pp.215-236
    • /
    • 2017
  • The purpose of this study is to develop an automatic classification system for recommending appropriate books of 9 enneagram personality types, using book information data reviewed by librarians. Data used for this study are book review of 501 recommended titles for children and young adults from National Library for Children and Young Adults. This study is implemented on the assumption that most people prefer different types of books, depending on their preference or personality type. Performance test for two different types of machine learning models, nonlinear kernel and linear kernel, composed of 360 clustering models with 6 different types of index term weighting and feature selections, and 10 feature selection critical mass were experimented. It is appeared that LIBLINEAR has better performance than that of LibSVM(RBF kernel). Although the performance of the developed system in this study is relatively below expectations, and the high level of difficulty in personality type base classification take into consideration, it is meaningful as a result of early stage of the experiment.

Opinion Mining of Product Reviews using Sentiment Phrase Patterns considered the Endings of Declinable Words (어미변화를 고려한 감성 구문 패턴을 이용한 상품평 의견 분류)

  • Kim, Jung-Ho;Cha, Myung-Hoon;Kim, Myung-Kyu;Chae, Soo-Hoan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.285-290
    • /
    • 2010
  • 인터넷이 대중화됨에 따라 누구나 쉽게 자신의 의견을 온라인상에 표현할 수 있게 되었다. 그 결과 생각이나 느낌을 나타내는 의견 데이터들의 양이 급속도로 방대해졌으며, 이러한 데이터들을 이용한 여러 응용 사례들의 등장으로, 효율적인 검색 및 자동 분류 기술이 요구되고 있다. 이런 기술적 흐름에 맞추어 의견 데이터 분류에 관한 여러 연구들이 이루어져 왔다. 이러한 의견 분류에 대한 연구들을 살펴보면, 분류를 위해 자질(Feature)로서 사용한 단일어(Single word)가 아닌 2개 이상의 N-gram 단어, 어휘 구문 패턴 및 통사 구문 패턴 등을 사용한다. 특히, 패턴은 단일어나 N-gram 단어에 비해 유연하고, 언어학적으로 풍부한 정보를 표현할 수 있기 때문에 이를 주요 연구 주제로 사용되었다. 그럼에도 불구하고, 이러한 연구들은 주로 영어에 대한 연구들이었으며, 한국어에 패턴을 적용하여 주관성을 갖는 문장을 분류하거나, 극성을 분류하는 연구들은 아직 미비하다. 한국어의 특색으로 한국어는 용언의 활용이 발달되어 있어, 어미의 변화가 다양하며, 그 변화에 따라 의미가 미묘하게 변화한다. 그러나 기존 한국어에 대한 의견 분류 연구들은 단어의 핵심 의미만을 파악하기 위해 어미 부분을 제거하고 어간만을 취해서 처리하여 어미에 대한 의미변화를 고려하지 못하므로 분류 정확도가 영어권에 연구 결과에 비해 떨어진다. 그래서 본 연구는 영어에 적용된 패턴을 이용한 기존 방법들을 정리하고, 그 방법들 중에서 극성을 지닌 문장성분 패턴을 한국어에 적용하였다. 그리고 어미의 변화에 대한 패턴을 추출하여 이 변화가 의견 분류의 성능에 미치는 영향을 분석하였다.

  • PDF

Generating a Korean Sentiment Lexicon Through Sentiment Score Propagation (감정점수의 전파를 통한 한국어 감정사전 생성)

  • Park, Ho-Min;Kim, Chang-Hyun;Kim, Jae-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 2020
  • Sentiment analysis is the automated process of understanding attitudes and opinions about a given topic from written or spoken text. One of the sentiment analysis approaches is a dictionary-based approach, in which a sentiment dictionary plays an much important role. In this paper, we propose a method to automatically generate Korean sentiment lexicon from the well-known English sentiment lexicon called VADER (Valence Aware Dictionary and sEntiment Reasoner). The proposed method consists of three steps. The first step is to build a Korean-English bilingual lexicon using a Korean-English parallel corpus. The bilingual lexicon is a set of pairs between VADER sentiment words and Korean morphemes as candidates of Korean sentiment words. The second step is to construct a bilingual words graph using the bilingual lexicon. The third step is to run the label propagation algorithm throughout the bilingual graph. Finally a new Korean sentiment lexicon is generated by repeatedly applying the propagation algorithm until the values of all vertices converge. Empirically, the dictionary-based sentiment classifier using the Korean sentiment lexicon outperforms machine learning-based approaches on the KMU sentiment corpus and the Naver sentiment corpus. In the future, we will apply the proposed approach to generate multilingual sentiment lexica.