• 제목/요약/키워드: 주제어밸브

검색결과 7건 처리시간 0.018초

플랩제어시스템 주제어밸브의 모델기반 설계 및 성능해석 (Model-based Design and Performance Analysis of Main Control Valve of Flap Control System)

  • 조현준;안만진;주춘식
    • 항공우주시스템공학회지
    • /
    • 제13권4호
    • /
    • pp.50-59
    • /
    • 2019
  • 플랩제어시스템의 주요 구성품인 주제어밸브의 설계는 실제 제작 경험을 바탕으로 반복-오차 방법에 의존하여 수행하였다. 본 논문에서는 모델 기반의 부품 설계 방법을 제안하였다. 플랩제어시스템은 주제어 밸브, 고장-안전 밸브, 솔레노이드 밸브, LVDT, 구동 모터 등으로 구성된다. 주제어밸브는 주로 스풀과 슬롯으로 구성된다. 주제어밸브의 중요한 설계변수는 슬롯의 폭 (Slot Width), 오버 랩(Overlap) 및 간극(Clearance)이다. AMESim을 활용하여 주 제어 밸브의 유로를 모델링하고 해석하였다. 제안된 설계절차를 적용한 결과 허용된 가공오차 범위 내에서 요구 성능을 충족함을 확인하였다.

굴삭기 IMV용 비례전자밸브의 동특성 (Dynamic Characteristics of Electro-hydraulic Proportional Valve for an Independent Metering Valve of Excavator)

  • 강창남;윤소남;정황훈;김문곤
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권2호
    • /
    • pp.46-51
    • /
    • 2018
  • Many research studies have been carried out related to saving energy and environmental pollution in the field of construction machinery. The best solution for reducing the related environmental pollution is to reduce fuel consumption by upgrading the energy efficiency of machinery used in this field. An efficiency upgrade in the field of construction machinery would mean minimizing the pressure loss in hydraulic pipe lines or achieving optimal operating conditions while responding to a load. One way to achieve this is to make an equivalent circuit, like an electrohydrostatic actuator, or to improve the spool type valve using the 4/3 way method. This study deals with an electrohydraulic proportional flow control valve. SimulationX software is used as a simulation tool for analyzing the dynamic characteristics. The analysis results, including the performance and characteristics of design parameters, are discussed and the validity of the theoretical analysis is also evaluated.

MCV의 기능밸브를 고려한 굴삭기의 실시간 시뮬레이션 (Real-Time Simulation of an Excavator Considering the Functional Valves of the MCV)

  • 임용현;이상욱;조민기;신대영;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.38-47
    • /
    • 2019
  • In this paper, a real-time simulation model of an excavator using Amesim was proposed, considered the operation of functional valves with the main control valve (MCV). The hydraulic system models including the pump and MCV have been developed. The kinematic and dynamic models of the manipulator have also been developed, to confirm the behavior of the excavator. The MCV model includes various functional valves such as the regenerative valves, holding valves, swing and boom priority valves, and regen-cut valves so that simulations similar to real excavators can be performed. Additionally, to obtain the real-time calculation performance, the parts with no major influence on the dynamic behavior were simplified, high frequency factors were removed, and parameters were optimized. The models were compared with each other through the numerical analysis with variable time-step and fixed time-step, and the results were verified by comparison with the results of the actual vehicle tests.

MCV용 IMV개발을 위한 기초설계 (Basic Design for Development of IMV for MCV)

  • 허준영;정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권3호
    • /
    • pp.49-56
    • /
    • 2018
  • Construction machinery is used to improve productivity in civil engineering work and construction work, and it is a lengthy operation, and consumes considerable fuel to cope with large loads. As a result, productivity and fuel consumption of the construction machine become the main deciding factors. In the hydraulic system of the excavator, the main control valve is the most critical position for control. The flow distribution for control performance is achieved by the metering orifice, that causes critical energy loss. To improve this, we propose a combination of a three port proportional pressure reducing valve and a poppet type flow control valve as an IMV to replace the existing spool type MCV. To validate the proposal, we analyze static characteristics by modeling mathematically, and analyze dynamic characteristics. Simulation using the AMESim software on the regeneration circuit of the boom cylinder up-down operation, verifies the energy-saving effect compared to the existing MCV when IMV is used.

유압 굴삭기용 시뮬레이터 개발 및 응용 (Development and Application of Simulator for Hydraulic Excavator)

  • 임태형;양순용
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.142-148
    • /
    • 2006
  • Hydraulic excavators have been popular devices in construction fields because of their multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of opening characteristics and dead zone of main control valve(MCV), oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and their circuits are expressed graphically. Also, parameters and nonlinear characteristics are considered in a text style. From the simulation results, fixed spring stiffness of MCV can not obtain the satisfactory accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing a proportional gain, is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The excavator simulator can be used to forecast the attachment behaviors when components, mechanical attachments and hydraulic circuits change, or other control algorithms are applied. The simulator could be a kind of development platform for new excavators.

자동굴삭시스템을 위한 굴삭기 유압부 시뮬레이션에 관한 연구 (A Study on the Hydraulic Simulation of Automatic Excavation System)

  • 권순광;이홍선;이창돈;양순용
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.984-989
    • /
    • 2008
  • Hydraulic excavators have been one of the most popular devices in the various industries for construction, forestry and agriculture etc. Because the excavators generally work in poor environment, the various organizations study to automate those. In this paper, a hydraulic simulation for evaluation of automatical excavation system is presented. It is using the AMESim based on the 1.5 ton excavator with fixed displacement pumps, and operated by signals those control pilot pressure to spools of the main control valve. The main control valve is regarded that only consists of boom, arm and bucket. This simulation program is expected to apply to evaluation of the controller for automatic excavation system and to estimate of effect in accordance with change of some components or parameter.

유압 굴삭기용 폐루프 타입 MCV(Main Control Valve) (Closed loop type MCV(Main Control Valve) for Hydraulic Excavator)

  • 임태형;이홍선;양순용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.864-870
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. From the simulation results, fixed spring stiffness of MCV can't satisfy accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing proportional gain is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The simulator can be used to forecastexcavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF