• 제목/요약/키워드: 주의집중 모델

검색결과 89건 처리시간 0.023초

Dual Bi-Directional Attention Flow를 이용한 한국어 기계이해 시스템 (Korean Machine Comprehension using Dual Bi-Directional Attention Flow)

  • 이현구;김학수;최정규;김이른
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.41-44
    • /
    • 2017
  • 기계이해 시스템은 주어진 문서를 이해하고 질의에 해당하는 정답을 출력하는 방법으로 심층 신경망을 활용한 주의집중 방법이 발달하면서 활발히 연구되기 시작했다. 본 논문에서는 어휘 정보를 통해 문서와 질의를 이해하는 어휘 이해 모델과 품사 등장 정보, 의존 구문 정보를 통해 문법적 이해를 하는 구문 이해 모델을 함께 사용하여 기계이해 질의응답을 하는 Dual Bi-Directional Attention Flow모델을 제안한다. 한국어로 구성된 18,863개 데이터에서 제안 모델은 어휘 이해 모델만 사용하는 Bi-Directional Attention Flow모델보다 높은 성능(Exact Match: 0.3529, F1-score: 0.6718)을 보였다.

  • PDF

주의집중 및 복사 작용을 가진 Sequence-to-Sequence 순환신경망을 이용한 제목 생성 모델 (Title Generation Model for which Sequence-to-Sequence RNNs with Attention and Copying Mechanisms are used)

  • 이현구;김학수
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.674-679
    • /
    • 2017
  • 대용량의 텍스트 문서가 매일 만들어지는 빅데이터 환경에서 제목은 문서의 핵심 아이디어를 빠르게 집어내는데 매우 중요한 단서가 된다. 그러나 블로그 기사나 소셜 미디어 메시지와 같은 많은 종류의 문서들은 제목을 갖고 있지 않다. 본 논문에서는 주의집중 및 복사 작용을 가진 sequence-to-sequence 순환신경망을 사용한 제목 생성 모델을 제안한다. 제안 모델은 양방향 GRU(Gated Recurrent Unit) 네트워크에 기반 하여 입력 문장을 인코딩(encoding)하고, 입력 문장에서 자동 선별된 키워드와 함께 인코딩된 문장을 디코딩함으로써 제목 단어들을 생성한다. 93,631문서의 학습 데이터와 500문서의 평가 데이터를 가진 실험에서 주의집중 작용방법이 복사 작용방법보다 높은 어휘 일치율(ROUGE-1: 0.1935, ROUGE-2: 0.0364, ROUGE-L: 0.1555)을 보였고 사람이 정성평가한 지표는 복사 작용방법이 높은 성능을 보였다.

주의 집중 기법을 활용한 객체 검출 모델 (Object Detection Model Using Attention Mechanism)

  • 김근식;배정수;차의영
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1581-1587
    • /
    • 2020
  • 기계 학습 분야에 합성 곱 신경망이 대두되면서 이미지 처리 문제를 해결하는 모델은 비약적인 발전을 맞이했다. 하지만 그만큼 요구되는 컴퓨팅 자원 또한 상승하여 일반적인 환경에서 이를 학습해보기는 쉽지 않은 일이다. 주의 집중 기법은 본래 순환 신경망의 기울기 소실 문제를 방지하기 위해 제안된 기법이지만, 이는 합성 곱 신경망의 학습에도 유리한 방향으로 활용될 수 있다. 본 논문에서는 합성 곱 신경망에 주의 집중 기법을 적용하고, 이때의 학습 시간과 성능 차이 비교를 통해 제안하는 방법의 우수성을 입증한다. 제안하는 모델은 YOLO를 기반으로 한 객체 검출에서 주의 집중 기법을 적용하지 않은 모델에 비해 학습 시간, 성능 모두 우수한 것으로 나타났으며, 특히 학습 시간을 현저히 낮출 수 있음을 실험적으로 증명하였다. 또한, 이를 통해 일반 사용자의 기계 학습에 대한 접근성 증대가 기대된다.

3차원 포인트 클라우드의 의미적 분할을 위한 멀티-모달 교차 주의집중 (Multi-Modal Cross Attention for 3D Point Cloud Semantic Segmentation)

  • 배혜림;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.660-662
    • /
    • 2023
  • 3차원 포인트 클라우드의 의미적 분할은 환경을 구성하는 물체 단위로 포인트 클라우드를 분할하는 작업으로서, 환경의 3차원적 구성을 이해하고 환경과 상호작용에 필수적인 시각 지능을 요구한다. 본 논문에서는 포인트 클라우드에서 추출하는 3차원 기하학적 특징과 함께 멀티-뷰 영상에서 추출하는 2차원 시각적 특징들도 활용하는 새로운 3차원 포인트 클라우드 의미적 분할 모델 MFNet을 제안한다. 제안 모델은 서로 이질적인 2차원 시각적 특징과 3차원 기하학적 특징의 효과적인 융합을 위해, 새로운 중기 융합 전략과 멀티-모달 교차 주의집중을 이용한다. 본 논문에서는 ScanNetV2 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 제안 모델 MFNet의 우수성을 입증한다.

학습 장애학생의 주의집중을 위한 M-ARCS모형 기반 모바일 앵커 프로그램 설계 (Design of a Mobile Anchor Program based on M-ARCS Model for Learning Disorder Students' Concentration)

  • 김철호;전우천
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2010년도 동계학술대회
    • /
    • pp.57-63
    • /
    • 2010
  • 학생들의 기초 기본학습 능력의 신장이 강조되고 있는 교육상황에 비추어 볼 때 지금까지 간과되어 왔던 학습장애에 대한 재인식과 학습 장애학생들을 위한 대책이 필요하다. 본 논문에서는 그 대책으로 기존의 keller의 동기유발학습이론인 ARCS모델을 변형하여 정착수업이론의 앵커라는 자발적 인지학습을 위한 매개체를 도입하여 변형된 M-ARCS이론을 토대로 학습 장애학생들의 동기유발 및 학습에 대한 긍정적인 인식을 향상시키는 것을 목적으로 한다. 본 모바일 앵커 프로그램의 특징은 다음과 같다. 첫째, ARCS이론에서 강조하던 학생들의 주의집중, 관련성, 성취감, 자신감이라는 항목을 통해 학습 장애 학생들에게 기존의 교육방법과 다른 동기유발을 통한 성공이라는 경험을 준다. 둘째, 정착수업모델의 앵커를 적용하여 학생들이 실제생활과 관련된 지식들을 배우고, 적용하도록 함으로써 보다 유의미한 지식을 생성하고 활용할 수 있도록 한다. 셋째, 기존의 앵커형태와 다른 모바일 앵커를 적용함으로써 실제 활동하며 문제를 해결해 나가는 과정을 도입하여 학습 장애 학생들에게 주의집중 및 동기유발을 할 수 있는 새로운 형태의 교육방법을 제시한다. 이러한 활동을 통해 최종적으로 학습 장애 학생들의 학업능력 향상을 도모한다.

  • PDF

학습 장애학생의 주의집중향상을 위한 m-ARCS 모형기반 모바일앵커프로그램의 개발과 적용 (Development and Application of a Mobile Anchor Program based on m-ARCS Model for Improving Concentration of Learning Disorder Students)

  • 김철호;전우천
    • 정보교육학회논문지
    • /
    • 제14권4호
    • /
    • pp.605-617
    • /
    • 2010
  • 장애학생들에게 주의집중은 매우 중요한 교육요소이다. 본 연구에서는 학습 장애학생들의 특성을 분석한 후, keller의 동기유발학습이론인 ARCS (Attention, Relevance, Confidence, Satisfaction)모델의 동기유발 요소와 정착학습이론의 앵커라는 자발적 인지학습을 위한 매개체, 그리고 방법적 측면의 모바일이라는 방법을 적용한 m-ARCS이론을 제시하였다. 또한, m-ARCS이론에 의해 구현한 모바일 앵커프로그램은 학습 장애학생의 특성을 고려하여 설계하여 그들의 주의집중력을 향상시킬 수 있다. 이처럼 m-ARCS이론에 의한 모바일 앵커프로그램을 구현하여 실제 학습장애 학생에게 적용한 결과, 첫째, 학습에 대한 재미와 흥미를 느끼며 동기유발 및 주의집중력이 향상 효과가 있었다. 둘째, 학습과정에서 의 성공경험으로 인해 학습에 대해 전보다 자신감이 향상되었다. 셋째, 모바일 앵커프로그램을 통해 활동한 학습내용들을 자연스럽게 습득함으로써 기초 기본 학습능력이 향상되었다.

  • PDF

관심영역 검출을 위한 상향식 현저함 모델 기반의 선택적 주의 집중 연구 (Detection of ROIs using the Bottom-Up Saliency Model for Selective Visual Attention)

  • 김종배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.314-317
    • /
    • 2011
  • 본 논문은 상향식 현저함 모델을 이용하여 입력 영상으로부터 시각적 주의를 갖는 영역들을 자동으로 검출하는 방법을 제안한다. 제안한 방법에서는 인간의 시각 시스템과 같이 사전 지식 없이 시각정보의 공간적인 분포에 근거하여 장면을 해석하는 상향식 현저함 모델 방법을 입력 영상에 적용하여 관심 물체 영역을 검출하는 연구이다. 상향식 현저함 방법은 Treisman의 세부특징이론 연구에서 제시한 바와 같이 시각적 주의를 갖는 영역은 시각정보의 현격한 대비차이를 가지는 영역으로 집중되어 배경에서 관심영역을 구분할 수 있다. 입력 영상에서 현저함 모델을 통해 3차원 현저함 맵을 생성한다. 그리고 생성된 현저함 맵으로부터 실제 관심영역들을 검출하기 위해 제안한 방법에서는 적응적 임계치 방법을 적용하여 관심영역을 검출한다. 제안한 방법을 관심영역 분할에 적용한 결과, 영역 분할 정확도 및 정밀도가 약 88%와 89%로 제시되어 관심 영상분할 시스템에 적용이 가능함을 알 수 있다.

주의집중 기반의 합성곱 양방향 게이트 순환 유닛을 이용한 코골이 소리 검출 방식 (Snoring sound detection method using attention-based convolutional bidirectional gated recurrent unit)

  • 김민수;이기용;김형국
    • 한국음향학회지
    • /
    • 제40권2호
    • /
    • pp.155-160
    • /
    • 2021
  • 본 논문은 수면 무호흡 환자의 중요한 증상 중의 하나인 코골이 사운드 자동 검출 방식을 제안한다. 제안된 방식에서는 수면 중 발생하는 소리 신호를 입력받아 소리 발생 구간을 검출하고, 검출된 소리 구간으로부터 변환된 스펙트로그램을 주의집중 기반의 합성곱 양방향 게이트 순환 유닛 기반의 분류기에 적용하였다. 적용된 주의집중 메커니즘은 합성곱 양방향 게이트 순환 유닛 모델을 확장하여 코골이 소리에 대한 차별적 특징 표현을 학습함으로써 코골이 검출 성능을 향상시켰다. 실험 결과는 제안하는 코골이 검출 방식이 기존 방식보다 약 3.1 % ~ 5.5 %의 정확도 향상을 보여준다.

비디오 캡션 생성을 위한 의미 특징 학습과 선택적 주의집중 (Semantic Feature Learning and Selective Attention for Video Captioning)

  • 이수진;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.865-868
    • /
    • 2017
  • 일반적으로 비디오로부터 캡션을 생성하는 작업은 입력 비디오로부터 특징을 추출해내는 과정과 추출한 특징을 이용하여 캡션을 생성해내는 과정을 포함한다. 본 논문에서는 효과적인 비디오 캡션 생성을 위한 심층 신경망 모델과 그 학습 방법을 소개한다. 본 논문에서는 입력 비디오를 표현하는 시각 특징 외에, 비디오를 효과적으로 표현하는 동적 의미 특징과 정적 의미 특징을 입력 특징으로 이용한다. 본 논문에서 입력 비디오의 시각 특징들은 C3D, ResNet과 같은 합성곱 신경망을 이용하여 추출하지만, 의미 특징은 본 논문에서 제안하는 의미 특징 추출 네트워크를 활용하여 추출한다. 그리고 이러한 특징들을 기반으로 비디오 캡션을 효과적으로 생성하기 위하여 선택적 주의집중 캡션 생성 네트워크를 제안한다. Youtube 동영상으로부터 수집된 MSVD 데이터 집합을 이용한 다양한 실험을 통해, 본 논문에서 제안한 모델의 성능과 효과를 확인할 수 있었다.

선택적 주의집중 모델과 YOLO를 이용한 선행 차량 정지등 검출 시스템 구현 (Implementation of Preceding Vehicle Break-Lamp Detection System using Selective Attention Model and YOLO)

  • 이우범
    • 융합신호처리학회논문지
    • /
    • 제22권2호
    • /
    • pp.85-90
    • /
    • 2021
  • 운전자의 안전 운전을 위한 첨단 운전자 보조시스템(ADAS; Advanced Driver Assistance System)은 자율주행 자동차에서 중요한 연구 분야 가운데 하나이다. 특히, 이전에 자동차에 부착된 영상센서를 기반으로 한 ADAS 소프트웨어는 구축 비용이 저렴하고 그 활용도가 우수하다. 본 논문에서는 선행차의 주행 상황을 인지할 수 있는 선행 차량 후미등(Tail-Lamp)의 정지등(Break-Lamp) 영역을 검출하는 알고리즘을 제안한다. 제안하는 방법은 주행 영상으로부터 객체 추적에 우수한 성능을 보이고 있는 YOLO 기술을 이용하여 자동차 객체를 추출하고, 추출된 자동차 관심 영역의 HSV 영상을 이용하여 정지등의 밝기 변화 영역을 검출한다. 그 다음 검출된 각 정지등 후보 고립영역을 라벨링하여 후보 영역들 간의 모양 대칭성을 인지하는 선택적 주의집중 모델(Selective Attention Model)을 적용하여 정지등 영역을 검출한다. 제안한 알고리즘의 성능 평가를 위하여 다양한 주행 영상에 적용하여 실험한 결과 ADAS에 적용 가능한 성공적인 검출 결과를 보였다.